Összes szerző


Visnovitz Tamás

az alábbi absztraktok szerzői között szerepel:

Kovács Dóra Kinga
Nanoinjection of fluorescent nanoparticles to single live cells by robotic fluidic force microscopy

Aug 29 - kedd

12:15 – 12:30

Modern biofizikai módszerek

E13

Nanoinjection of fluorescent nanoparticles to single live cells by robotic fluidic force microscopy

Kinga Dóra Kovács1,*, Tamás Visnovitz2,3,*, Tamás Gerecsei1, Beatrix Peter1, Sándor Kurunczi1, Anna Koncz2, Krisztina Németh2, Dorina Lenzinger2, Krisztina V. Vukman2, Péter Lőrincz4, Inna Székács1, Edit I. Buzás2,5,6**, Robert Horvath1,**

Nanobiosensorics Laboratory, Centre of Energy Research, ELKH, Budapest, Hungary

2 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary

3 Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Budapest, Hungary

Department of Anatomy, Cell and Developmental Biology, ELTE Eötvös Loránd University, Budapest, Hungary

5 HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary

ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary

*,** equal contributions / **corresponding authors

Direct injection of fluorescent nanoparticles into the cytoplasm of living cells can provide new insights into the intracellular fate of various different fluorescently labelled biologically active particles. Here we used fluorescent nanoparticles to prove the feasibility of nanoinjection into single live HeLa cells by using robotic fluidic force microscopy (FluidFM). This injection platform offers the advantage of high cell selectivity and efficiency. We confirmed the successful injection of both GFP encoding plasmids and GFP tagged fluorescent nanoparticles to the cells by confocal microscopy. We were able track the nanoparticles in the living cells for 20 hours. The injected nanoparticles were initially localized in concentrated spot-like regions within the cytoplasm. Later, they were transported towards the periphery of the cells. Based on our proof-of-principle data, the FluidFM platform is suitable for targeting single living cells by fluorescently labelled biologically active particles and may lead to information about the intracellular cargo delivery at a single-cell level.