Összes szerző


Szigyártó Imola Csilla

az alábbi absztraktok szerzői között szerepel:

Farkasné Bebesi Tímea
Spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles

Aug 30 - szerda

15:30 – 17:00

II. Poszterszekció

P36

Spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles

Tímea Bebesi Farkasné1,2, Marcell Pálmai1, Imola Csilla Szigyártó1, Anikó Gaál1, Orsolya Bálint-Hakkel3, Attila Bóta1, Zoltán Varga1, Judith Mihály1

1 Research Centre for Natural Sciences, Institute if Material and Environmental Sciences

2 Eötvös Lóránd University, Hevesy György PhD School of Chemistry

3 Centre for Energy Research, Institute of Technical Physics and Material Sciences

Extracellular vesicles (EVs), spontaneously released by cells, play an important role in intercellular communication. Due to their special size and composition (lipid bilayer-bounded nanosystems, usually smaller than 200 nm, containing both proteins and RNA), they play diagnostic, prognostic and therapeutic roles, for example, they can be "new generation" biomarkers of various diseases.

IR spectroscopy, especially attenuated total reflection (ATR), is rapidly emerging as a label-free promising tool for molecular profiling of EVs. However, the relative low number of extracellular vesicles (~1010 particle/mL) and possible impurities (protein aggregates, lipoproteins, buffer molecules, etc.) present in EV samples might result in poor signal-to-noise (S/N) ratio. The plasmonic properties of gold nanoparticles (AuNPs) are used in many characterization techniques, inclusive characterization and testing of EVs. Surface-enhanced infrared spectroscopy (SEIRA – Surface-enhanced IR absorption) using plasmonic nanoparticle, however, is still an unexploited method.

Nanosized gold nanoparticles and tailored nanostructures with confined electromagnetic near-fields were prepared, characterized and tested with model-EVs (EV-like liposomes) and red blood cell derived EVs. A concentration dependent interaction was established between the citrate-stabilized gold nanoparticles and the lipid bilayers, which strongly affected both the plasmonic behaviour of AuNPs and the bilayers lipid organization. At appropriate extracellular vesicle – gold nanoparticle ratio a 6-fold maximum enhancement was obtained in the lipid spectral signatures. Exploiting the fine details of EV – gold nanoparticles interaction, further surface modifications of gold nanoobjects are planned, enhancing the sensitivity and specificity of EV detection enabling a strong platform for IR spectroscopic investigations of EVs.

Acknowledgment

This work was funded by ÚNKP-22-3-II-ELTE-507 and NKFIH K-131657, K131594, 2020-1-1-2- PIACI-KFI_2020-00021, TKP2021-EGA and KKP_22-144180 grants. ZV and MP are supported by the János Bolyai Research Scholarship of the HAS.

Tasvilla Sonallya
Systematic investigation and classification of host defence and cell penetrating peptides based on their affinity for interaction with extracellular vesicles

Aug 30 - szerda

09:55 – 10:10

Membránok és membránfehérjék biofizikája

E24

Systematic investigation and classification of host defence and cell penetrating peptides based on their affinity for interaction with extracellular vesicles.

Tasvilla Sonallya1,2, Imola Cs. Szigyártó1 , Tünde Juhász1, Edit I. Buzas4,5,6 Delaram Khamari 4,Kinga Ilyes2,3 Zoltán Varga3, and Tamás Beke-Somfai1*

1Institute of Materials and Environmental Chemistry, Biomolecular Self-assembly Research Group, Research Centre for Natural Sciences, Budapest H-1117, Magyar tudósok körútja 2, Hungary,

2Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter sétány 1/A, Hungary.

3Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Research Centre for Natural Sciences, Budapest, H-1117, Magyar tudósok körútja 2, Hungary.

4Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary

5HCEMM Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary

6ELKH-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.

Host defence peptides (HDP) are promising biomaterials with antimicrobial and anticancer applications. By disturbing or lysing the cell membrane, they carry out their biological role. These peptides show numerous types of membrane interaction mechanisms i.e., carpet, toroidal pore, and barrel stave. Cell penetrating peptide find application in cargo loading and uptake of small molecules and nanoparticles. The interactive mechanism of these peptides has been studied widely with model membranes however our knowledge with extracellular vesicles (EV) is scarce. There are several aspects where EV – HDP interactions could be relevant, ranging from cooperative presence on infection sites functions to EV cargo loading. Hence, based on their in-depth investigation using biophysical techniques, the binding affinity with extracellular vesicles was studied and categorised as low binding affinity, medium binding affinity and high affinity. This initial categorisation gives further insight into its specific interactive mechanism.

Acknowledgment:

This work was funded by the Ministry of Innovation and Technology of Hungary through the National Research, Development and Innovation Office, financed under the TKP2021-EGA-31, the 2020-1-1-2-PIACI-KFI_2020-00021, 2019-2.1.11-TÉT-2019-00091 and KKP_22 project no. 144180. Support from Eötvös Loránd Research Network, grant no. SA-87/2021 and KEP-5/2021 is also acknowledged. Z.V. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

1. Singh, P. et al. Removal and identification of external protein corona members from RBC‐derived extracellular vesicles by surface manipulating antimicrobial peptides. J. Extracell. Biol. 2, (2023).

2. Singh, P. et al. Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Front. Chem. 8, (2020).