Összes szerző


Ounoki Roumaissa

az alábbi absztraktok szerzői között szerepel:

Sóti Adél
Effect of salt stress on etioplast and chloroplast membranes of thylakoid transporter mutants of Arabidopsis thaliana

Aug 30 - szerda

15:30 – 17:00

II. Poszterszekció

P53

Effect of salt stress on etioplast and chloroplast membranes of thylakoid transporter mutants of Arabidopsis thaliana

Helga Fanni Schubert 1, Adél Sóti 1, Richard Hembrom 1, Roumaissa Ounoki 1, Enkhjin Enkhbileg1, Emilija Dukic 2, Cornelia Spetea 2, and Katalin Solymosi 1

1 Eötvös Loránd University, Budapest

2 University of Gothenburg, Gothenburg, Sweden

Soil salinity is an increasing problem for agriculture worldwide. Salinity has a complex effect on plants and influences the structure of plastids in different ways. Most often the effect of salt stress is studied in leaf chloroplasts, and in several cases swelling of the intrathylakoidal space of chloroplast inner membranes is reported under such conditions. However, it is yet unclear what causes the swelling of these membranes, and whether it has any relation to ion transport processes across these membranes. In this work, plastid ultrastructure was compared in the cotyledons and leaves of Arabidopsis thaliana plants of different developmental stages and grown under different light regimes under control conditions as well as under salt stress (30 min treatment with 200 or 300 mM NaCl or 600 mM NaCl:KCl, 1:1). In addition to the wild-type (WT) plants, we also analysed the thylakoid membrane structure and photosynthetic activity in single, double and triple mutants of the thylakoid-located voltage-gated chloride ion channel VCCN1, chloride ion channel CLCe and potassium proton exchanger KEA3. The above salt treatment did not affect the structure of the photosynthetic apparatus of mature chloroplasts in old leaves, however, it influenced the structure of chloroplasts in cotyledons in various ways, indicating the sensitivity of the young seedlings to the stress, and the potential presence of protective mechanisms that stabilize chloroplast structure at later developmental stages even under the above stress conditions. Salt stress also had an effect on the etioplasts of both WT and some mutant plants.

Acknowledgment

The work was funded by the grant OTKA FK124748, and supported by the ÚNKP-22-5 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund (to K.S.) and by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (to K.S.).