Összes szerző


Farkasné Bebesi Tímea

az alábbi absztraktok szerzői között szerepel:

Farkasné Bebesi Tímea
Spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles

Aug 30 - szerda

15:30 – 17:00

II. Poszterszekció

P36

Spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles

Tímea Bebesi Farkasné1,2, Marcell Pálmai1, Imola Csilla Szigyártó1, Anikó Gaál1, Orsolya Bálint-Hakkel3, Attila Bóta1, Zoltán Varga1, Judith Mihály1

1 Research Centre for Natural Sciences, Institute if Material and Environmental Sciences

2 Eötvös Lóránd University, Hevesy György PhD School of Chemistry

3 Centre for Energy Research, Institute of Technical Physics and Material Sciences

Extracellular vesicles (EVs), spontaneously released by cells, play an important role in intercellular communication. Due to their special size and composition (lipid bilayer-bounded nanosystems, usually smaller than 200 nm, containing both proteins and RNA), they play diagnostic, prognostic and therapeutic roles, for example, they can be "new generation" biomarkers of various diseases.

IR spectroscopy, especially attenuated total reflection (ATR), is rapidly emerging as a label-free promising tool for molecular profiling of EVs. However, the relative low number of extracellular vesicles (~1010 particle/mL) and possible impurities (protein aggregates, lipoproteins, buffer molecules, etc.) present in EV samples might result in poor signal-to-noise (S/N) ratio. The plasmonic properties of gold nanoparticles (AuNPs) are used in many characterization techniques, inclusive characterization and testing of EVs. Surface-enhanced infrared spectroscopy (SEIRA – Surface-enhanced IR absorption) using plasmonic nanoparticle, however, is still an unexploited method.

Nanosized gold nanoparticles and tailored nanostructures with confined electromagnetic near-fields were prepared, characterized and tested with model-EVs (EV-like liposomes) and red blood cell derived EVs. A concentration dependent interaction was established between the citrate-stabilized gold nanoparticles and the lipid bilayers, which strongly affected both the plasmonic behaviour of AuNPs and the bilayers lipid organization. At appropriate extracellular vesicle – gold nanoparticle ratio a 6-fold maximum enhancement was obtained in the lipid spectral signatures. Exploiting the fine details of EV – gold nanoparticles interaction, further surface modifications of gold nanoobjects are planned, enhancing the sensitivity and specificity of EV detection enabling a strong platform for IR spectroscopic investigations of EVs.

Acknowledgment

This work was funded by ÚNKP-22-3-II-ELTE-507 and NKFIH K-131657, K131594, 2020-1-1-2- PIACI-KFI_2020-00021, TKP2021-EGA and KKP_22-144180 grants. ZV and MP are supported by the János Bolyai Research Scholarship of the HAS.