Összes szerző
Benke Kálmán
az alábbi absztraktok szerzői között szerepel:
-
Sulea Cristina
Fibrillin-1 microfibrils in Marfan syndrome: nanoscale structural characterization using atomic force microscopy -
Aug 29 - kedd
15:30 – 17:00
I. Poszterszekció
P27
Fibrillin-1 microfibrils in Marfan syndrome: nanoscale structural characterization using atomic force microscopy
Cristina M. Șulea1,2,3, Zsolt Mártonfalvi1, Csilla Csányi1, Dóra Haluszka1, Miklós Pólos2,3, Kálmán Benke2,3, Zoltán Szabolcs2,3 and Miklós S. Z. Kellermayer1
1 Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
2 Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
3 Hungarian Marfan Foundation, 1122 Budapest, Hungary
Fibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation in microfibrillar function and, conceivably, alterations in the microfibrils’ supramolecular structure.
The aim of the study was to perform a nanoscale structural characterization of fibrillin-1 microfibrils isolated from human aortic samples with different FBN1 gene mutations and to compare them with microfibrillar assemblies purified from non-MFS human aortic tissue.
Aortic wall samples were obtained from patients undergoing specific cardiovascular surgical interventions. Fibrillin-rich microfibrils were extracted by bacterial collagenase digestion and purified by size-exclusion chromatography. Atomic force microscopy was employed to visualize and study the microfibrillar assemblies.
Fibrillin-1 microfibrils displayed a characteristic “beads-on-a-string” appearance. The microfibrillar assemblies were investigated for bead geometry (height, length, and width), interbead region height, and periodicity. MFS fibrillin-1 microfibrils had a slightly higher mean bead height, but the bead length and width, as well as the interbead height, were significantly smaller in the MFS group. The mean periodicity varied around 50–52 nm among samples.
In conclusion, the data suggest an overall thinner and presumably more frail structure for the MFS fibrillin-1 microfibrils, which may play a role in the development of MFS-specific aortic symptomatology.
Acknowledgment
Funding sources: NRDI Office (ÚNKP-22-3-I-SE-49 to C.M.Ș.; K135360 to M.S.Z.K.; TKP2021-EGA-23), European Union (RRF-2.3.1-21-2022-00003 – National Cardiovascular Laboratory).