Összes szerző


Székács Inna

az alábbi absztraktok szerzői között szerepel:

Farkas Enikő
A glyphosate gyomirtószer-hatóanyag élettani hatása MC3T3-E1 sejtek adhéziójára

Aug 27 - kedd

12:30 – 12:45

Molekuláris biofizika

E14

A glyphosate gyomirtószer-hatóanyag élettani hatása MC3T3-E1 sejtek adhéziójára

Farkas Enikő1,2, Orgován Norbert3, Székács András4, Horváth Róbert1, Székács Inna1

1Magyar Tudományos Akadémia, Energiatudományi Kutatóközpont, Műszaki Fizikai és Anyagtudományi Intézet, Nanobioszenzorika Momentum Csoport

2Pannon Egyetem, Vegyészmérnöki- és Anyagtudományok Doktori Iskola (Molekuláris- és Nanotechnológiák Doktori Iskola)

3Eötvös Loránd Tudományegyetem, Természettudományi Kar, Biológiai Fizika Tanszék

4Nemzeti Agrárkutatási és Innovációs Központ, Agrár-Környezettudományi Kutatóintézet

A világszerte használt növényvédőszer-hatóanyag a glyphosate biztonságos használatával kapcsolatban számos kérdés merült fel, mivel bizonyos toxikus hatásokkal hozták összefüggésbe (pl.: csontvelői, magzati, embrionális és placentális sejtvonalakon). Ezért ennek a szernek a sejtadhézióra gyakorolt élettani hatását vizsgáltuk Epic BT bioszenzorral, a sejtes folyamatokat jelölésmentesen és valós időben monitorozni képes szenzorikai eljárással.

Epic BT alkalmazásával kidolgoztunk receptorspecifikus sejtletapadási vizsgálatokat, lehetővé téve integrin–ligandum-interakciók kvantitatív karakterizálását élő sejtekben [1]. Modellként a legkisebb ismert természetes diszintegrint, az echistatint választottuk ki az integrin által közvetített sejtadhézió gátlására. Az új módszert alkalmazva az echistatin gátlási koncentráció félértékét (IC50) az élő HeLa sejtekben 20-40 nM tartományban határoztuk meg, ami összhangban van a szakirodalmi adatokkal.

Továbbá a glyphosate integrinkötődési folyamatokra gyakorolt célzott hatását és sejtadhéziós modulációs effektusát figyeltünk meg és tártuk fel Epic BT optikai bioszenzor segítségével. Kimértük különböző koncentrációjú glyphosate-oldattal bevont felületeken a MC3T3-E1 sejtek adhéziós kinetikáját, ahol azt tapasztaltuk, hogy a glyphosate alacsony koncentráció esetén (0,1%) az RGD-motívumhoz hasonlóan serkenti, míg magasabb koncentráció alkalmazásával gátolja a sejtek letapadását a szenzorfelületre.

Különböző koncentrációjú glyphosate-oldatokkal is vizsgáltuk az integrinblokkoló hatást. Megállapítottuk a glyphosate IC50 értéket 20,6 mM. Illetve az RGD-specifikus integrinek (MC3T3-E1 sejtekben) és az oldatban lévő glyphosate közötti háromdimenziós disszociációs konstansát számítottuk ki, amelyre 0,352 mM értéket kaptunk, míg az RGD-specifikus integrinek az RGD-motívumhoz mutatott affinitására 5,97 µM-t.

Köszönetnyilvánítás

Magyar Tudományos Akadémia „Lendület Program”, NKFIH (ERC_HU, KH_17, NVKP_16-1-2016-0049 és KKP_19) és OTKA K109865.

Irodalom

[1] I. Szekacs et al. (2018) Sens Actuators B-Chem 256: 729–734.

Gerecsei Tamás
Felületi kölcsönhatások erősségének egyedi-sejt szintű mérése automatizált mikropipettával

Aug 28 - szerda

09:30 – 09:45

Bioszenzorika és bio-nanotechnológia

E26

Felületi kölcsönhatások erősségének egyedi-sejt szintű mérése automatizált mikropipettával

Gerecsei Tamás1,2, Erdődi István3, Székács Inna2, Hős Csaba3, Szabó Bálint1,2 és Horváth Róbert2

1 ELTE TTK, Biológiai Fizika Tanszék

2 MTA EK MFA Nanobioszenzorika Kutatócsoport

3 BME GPK Hidrodinamikai Rendszerek Tanszék

A biológiai tudományokban zajló robbanásszerű fejlődés jelentős felismerései közé tartozik, hogy az élő sejtek populáció jóval kevésbé homogének mint azt korábban feltételezték, ezért az úgynevezett egyedi-sejtes technológiák mára meghatározó kutatási iránnyá váltak a kísérletes biológia és a biofizika területén. Egy alapvető biológiai jelenség, az adhézió, egyedi-sejt szintű mérésére jelenleg még kevés módszer létezik, azonban a terület rohamosan fejlődik hiszen az ilyen jellegű vizsgálatok által alapvető fontosságú biológiai kérdésekre adhatunk választ [1].

Munkám során egy új módszert, az automatizált mikropipettát [2] alkalmaztam sejtpopulációk egyedi-sejt szintű adhéziós erő eloszlásának mérésére, illetve egy olyan modell rendszert fejlesztettem ki, amely a kapott erő értékékek lehető legpontosabb meghatározását teszi lehetővé. A rendszer mikroszkopikus méretű polisztirol gyöngyök felületének avidin-biotin kötésen keresztüli kémiai funkcionalizálásán alapul. A beállított nyomáskülönbség által a sejtre kifejtett erőt numerikus szimulációk segítségével határoztuk meg. Mivel a szimuláció eredménye függ a modell rendszer geometriájától, optikai hullámvezető spektroszkópiával karakterizáltuk a gyöngyök és a felszín közötti kontaktust és az abban lévő kötések számát. A mért erő kalibrációjához egy szintén új, atomerő-mikroszkópián (AFM) alapuló módszert , a FluidFM-et alkalmaztam. A technika lényege, hogy egy mikrofluidikai csatornával ellátott AFM mérőfejjel sejteket vagy mikroszkopikus részecskéket választunk el az aljzattól miközben mérjük a fellépő tapadási erőt.

A két módszer alkalmazása által kapott erőspektrumok jó egyezést mutattak így beláttuk, hogy a mikropipettás módszer lényegében a kolloid erőspektroszkópia magas áteresztőképességű verziójaként alkalmazható bármilyen biológiai vagy általános molekuláris kölcsönhatás erősségének mérésére. Demonstráljuk továbbá, hogy a gyöngyfelületet eukarióta vagy bakteriális felületi motívumokkal bevonva képesek vagyunk megmérni az egyes felületi komponensek hozzájárulását az adhéziós folyamatokhoz

Irodalom

[1] Ungai-Salánki, R., Peter, B., Gerecsei, T., Orgovan, N., Horvath, R., & Szabó, B. (2019). A practical review on the measurement tools for cellular adhesion force. Advances in Colloid and Interface Science.

[2] Ungai-Salánki, R., Gerecsei, T., Fürjes, P., Orgovan, N., Sándor, N., Holczer, E., ... & Szabó, B. (2016). Automated single cell isolation from suspension with computer vision. Scientific reports, 6, 20375.

Kanyó Nicolett
Rákos sejtek adhéziójának vizsgálata optikai bioszenzorral: a glikokálix enzimatikus emésztésének hatásai

Aug 27 - kedd

12:45 – 13:00

Molekuláris biofizika

E15

Rákos sejtek adhéziójának vizsgálata optikai bioszenzorral: a glikokálix enzimatikus emésztésének hatásai

Kanyó Nicolett, Székács Inna, Horváth Róbert

MTA EK MFA Nanobioszenzorika Lendület Kutatócsoport

Az élő sejtek adhéziója központi szerepet játszik számos életfolyamatban. A rákos sejtek terjedésében a sejtadhéziós folyamatok meghatározó szerepet töltenek be [1]. Sejtadhéziós molekulák közé tartoznak az integrinek. Az integrinek fő funkciója a sejt-extracelluláris mátrix közötti kapcsolat kialakítása. Egyes integrinek az RGD tripeptiddel kölcsönhatva indítják el a sejtadhéziós folyamatot. Ez a mechanizmus nagyban függ a kapcsolódási felületen lévő RGD-motívumok számától, elhelyezkedésétől, egymástól mért átlagos távolságától [2].

A glikokálix szinte valamennyi sejttípusra, köztük a rákos sejtekre is jellemző sejtfelszíni cukorréteg, amely nagyban befolyásolja a sejtek kölcsönhatását a környezetükkel. A glikokálix az integrin rendszer viselkedésében és a sejtek szignalizációban feltételezhetően erős, de részleteiben nem tisztázott szabályozó funkciót lát el. A glikokálix adhézióban betöltött szerepe meglehetősen ellentmondásos, egyes helyeken az adhéziót növelő, máshol viszont csökkentő szerepéről számolnak be.

A sejtadhézió valós idejű, kvantitatív követésére napjainkban kezdenek elterjedni a felületérzékeny optikai bioszenzorok, mint pl. a rezonáns rácsos hullámvezető (RWG) technológia. Az RWG típusú bioszenzorok közé tartozik a Corning Epic® BenchTop (Epic BT) műszer is. Az Epic BT kiemelkedő előnye a nagy áteresztőképesség és felületi érzékenység, a műszer képes biológiai folyamatok valós idejű követésére is, ezért az adhézió kinetikáját segítségével nagy precizitással detektálhatjuk. [3].

Kutatómunkánk során különböző RGD-motívum sűrűségűszintetikus polimer felületeket alakítottunk ki, melyeken HeLa sejtek adhéziós kinetikát mértük. A létrehozott felületeken meghatároztuk a sejtek integrinjei és a felület RGD-motívumai közötti kötés disszociációs állandójáta glikokálix egyes komponenseit emésztő enzimmel kezelt és kezeletlen esetben is. A kezelések hatására az integrin-RGD kötés erősödését tapasztaltuk. Megállapítottuk továbbá, hogy a glikokálix elemek eltávolítása nemcsak az adhézió mértékét csökkenti, de a sejtek kezelésére használt enzimkoncentráció növelésével az adhézió sebessége is csökken. A látszólag egymásnak ellentmondó eredményeink magyarázatára egy egyszerű biofizikai modellt állítottunk fel a glikokálix szabályozó funkcióját illetően.

Köszönetnyilvánítás

Köszönjük, Dr. Deli Mária Annának és Dr. Dér Andrásnak a kutatási téma megindításában a csoportunknak nyújtott értékes segítségét, a hasznos megbeszéléseket

Irodalom

[1] Mackay, C. R., & Imhof, B. A. (1993) Immunology today 14(3), 99-102.

[2] Orgovan, N., Peter, B., Bősze, S., Ramsden, J. J., Szabó, B., & Horvath, R. (2014) Scientific reports 4, 4034.

[3] Peter, B., Ungai-Salanki, R., Szabó, B., Nagy, A. G., Szekacs, I., Bősze, S., & Horvath, R. (2018) ACS omega 3(4), 3882-3891.

Kovács Kinga Dóra
Élő sejtek jelölésmentes vizsgálata optikai bioszenzorral áramlási térben egyidejűleg létrehozott széles áramlási sebességtartományban

Aug 27 - kedd

09:10 – 09:25

Sejtanalitika biofizikai megközelítéssel

E4

Élő sejtek jelölésmentes vizsgálata optikai bioszenzorral áramlási térben egyidejűleg létrehozott széles áramlási sebességtartományban

Kovács Kinga Dóra1, Novák Martin1 , Hős Csaba2, Szabó Bálint3, Székács Inna1, Bonyár Attila4 és Horváth Róbert1

1 MTA EK MFA Nanobioszenzorika Labor, Budapest

2 Budapesti Műszaki és Gazdaságtudományi Egyetem Hidrodinamikai Rendszerek Tanszék, Budapest

3 Eötvös Loránd Tudományegyetem Biológiai Fizika Tanszék, Budapest

4 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikai Technológia Tanszék

Élő sejtek vizsgálata áramlási térben egy fontos területe a biofizikának, mivel így lehet vizsgálni az élő szervezeket ereiben fennálló körülményeket. Munkánkban egy olyan eszközt mutatunk be, ami jelölésmentes optikai bioszenzor segítségével (EPIC BT), nagy áteresztőképességgel képes nyomon követni a sejtekben lejátszódó változásokat áramlási tér hatására. Ez az eszköz lényegesen eltér az eddig ismert átfolyó küvettától illetve az úgynevezett ’plate and cone device’-tól: egy forgó mágneses tér segítségével tartott és forgatott mágneses keverőbot hozza létre az áramlást, így kikerülve a mechanikai összeköttetést a bioszenzor és a rotor között, jelentősen csökkentve a zajt.

Méréseinkben HeLa sejtek kitapadását és áramlás hatására bekövetkező lemosódását vizsgáltuk pll-g-peg/pll-g-peg-rdg funkcionalizált felületen. Fluidikai szimulációk segítségével vizsgáltuk a sejtek válaszát az áramlási sebesség, 0-1.16 m/s, függvényében.

Ezzel az új mérési elrendezéssel lehetséges lesz érfalsejteken hatóanyagok hatását vizsgálni áramlás alatt jelölésmentesen, illetve a különböző rákos sejtek áttétképzését részletesebben tanulmányozni.

Péter Beatrix
Kis molekulák és nanorészecskék élő sejtekre gyakorolt hatásának vizsgálata jelölésmentes bioszenzorral

Aug 28 - szerda

13:30 – 15:30

II. Poszterszekció

P50

Kis molekulák és nanorészecskék élő sejtekre gyakorolt hatásának vizsgálata jelölésmentes bioszenzorral

Péter Beatrix1, Székács Inna1, Hideyuki Nakanishi2, Lagzi István3, Bősze Szilvia4, Horváth Róbert1

1 MTA EK MFA Nanobioszenzorika Lendület Kutatócsoport

2 Kyoto Institute of Technology (KIT), Japán

3 BME TTK Fizika Tanszék

4 MTA-ELTE Peptidkémiai Intézet

A jelölésmentes bioszenzorok- és képalkotó technikák robbanásszerű fejlődésen mentek keresztül az utóbbi években; alkalmazásuk a biológiai alapkutatásokban csak most kezdődött el, a műszerek egyre érzékenyebbek, használatuk új utakat nyithat meg a biotechnológiai alkalmazásokban is. Az említett módszerek fontos előnye, hogy a méréseket valós időben, jelölő anyagok, festékek nélkül tudjuk megvalósítani, így ezek nem befolyásolják a vizsgált mintákat.

Kísérleteinkben Epic BT (RWG) jelölésmentes optikai bioszenzort alkalmaztunk a kis molekulájú epigallokatekin-gallát (EGCG, zöld tea polifenol) élő sejtekre (HeLa sejtvonal) gyakorolt hatásának vizsgálatára kopolimer bevonatokon, valós időben. Különös figyelmet fordítottunk az EGCGszakirodalomban alig részletezett oxidált formájára, és feltártuk, hogy ez az oxidált forma hogyan befolyásolja a sejtadhéziós bevonatok tulajdonságát, ezáltal a sejtek működését, adhézióját és morfológiáját közvetett módon. A módszer nagy előnye, hogy a kis molekulák és a sokkal nagyobb sejtek egyszerűen, nagy érzékenységgel vizsgálhatók egyazon kísérletben [1]. A polifenol közvetlen hatását is megfigyeltük úgy, hogy a sejteket előkezeltük a hatóanyaggal, és ezután figyeltük meg a sejtek adhéziós kinetikáját [2].

Az orvostudomány többek között nanoméretű részecskék segítségével igyekszik megoldást nyújtani a hatóanyagok kizárólag a célsejtekbe történő bejuttatására. Ezen irányvonalat felvéve pozitívan töltött TMA-funkcionalizált arany nanorészecskék HeLa sejtekbe hatolását kísértük figyelemmel a már említett bioszenzor segítségével valós időben [3].

A fenti eredményeinkkel először mutattuk meg, hogy a bioszenzoros mérések hozzájárulhatnak a természetes hatóanyagokat szállító nanorészecskék felületi rétegének az optimalizálásához is, a minél hatékonyabb hatóanyag-bejuttatás érdekében.

Köszönetnyilvánítás

Ez a munka a Lendület, ERC_HU és a KH_17 (NKFIH), K104275 és a MedinProt támogatásával készült.

Irodalom

[1] Peter B, Farkas E, Forgacs E, Saftics A, Kovacs B, Kurunczi S, Szekacs I, Csampai A, Bosze Sz, Horvath R (2017) Sci. Rep. 7: 42220.

[2] Peter B, Ungai-Salánki R, Szabó B, Nagy AG, Szekacs I, Bősze Sz, Horvath R (2018) ACS Omega 3: 3882–3891.

[3] Peter B, Lagzi I, Teraji S, Nakanishi H, Cervenak L, Zámbó D, Deák A, Molnár K, Truszka M, Szekacs I, Horvath R (2018) ACS Appl. Mater. Interfaces 10: 26841–26850.