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Digital image processing

Storing and compression (lossy and lossless (non-lossy)) of
images, 3D image stacks, orthogonal view

Digital and optical resolution

Histogram, LUT

Scientific image analysis programs

image




Representation of digital images

* Pixel (,picture element”): the
smallest unit in digital images
e |ts valueis a number whose value

B aEmEmmE s e i ional to th ber of

B ANEEEENEC O NEE is proportional to the number o
detected photons (in gray-scale
images)

e According to how many values a
pixel can have the image can be:

intensity scale possible values storage requirement

binary 0,1 1 bit/pixel

8-bit 0,1,...,255 1 byte/pixel

12-bit 0...4095 2 byte/pixel

16-bit 0...65535 2 byte/pixel

floating point 32 bit/pixel, 4 byte/pixel
practically limitless

double precision 64 bit/pixel, 8 byte/pixel




Why is digital image analysis necessary?

What is this

?
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In order to replace the (pattern)
Analyze images in a quantitative and reproducible way.

recognition capability of the

human visual system.



Storage of images

Representation of an image in memory
(pixel-by-pixel storage)

conversion for

saving
non-compressed compressed
(i.e. pixel-by-
pixel), e.g. TIFF,
BMP
lossy compression lossless
(e.g. JPG) compression (e.g.
TIFF)

for presentation purpuses

for image analysis and scientific publications

Parts of image files:

» descriptor: tells how to interpret
image data (how many
bits/pixel, X-Y size, etc.)

* image data

Lossy compression: the image
reconstructed from the compressed
data is not identical to the original one.



Lossy image
compression

TIFF, 388 KB IPG, 59KB

JPG, 26KB JPG, 20 KB JPG, 18 KB



Images with more than two dimensions: 3D, 4D, 5D, ...

: [ /S /S S S S e |
* S " et e . confocal
/ / / / / / :;;ccrlgscopic 3D image

z=0 um t=0 sec  A,,,=500 nm / / / / / e time

LITTTIT | e
// / [/
z=0.3 um t=5sec A,,=510 nm / / / / / /

z=0.6 um t=10 sec A,,,=520 nm /

//////

>3D:

Images with more than three dimensions are also possible, e,g. dimensions 1-3: x,y,z; 4" dimension:
time; 5" dimension: wavelength.



Displaying 3D images 1.

Orthogonal view/sections:
This is the x-y plane.

x-y plane

r
Orthogonal view

Type of input

@ Overlaid color stack

— Overlaid color stack

Color code of channel 1

v_

Color code of channel 2

v-

. Color stack Red Green
GCJ | Separate color stacks a Color code of channel 3 Color code of channel 4
Blue > Empty X
1°)
Aspect ratin |3 [¥] Orthogonal view | Clip to 255 = | Outputimage g
N
:l — Channel 1 — Channel 2 - — Channel 3- — Channel 4.
GJ ________ Color scale Color scale Color scale Color gcale
= res - (e -/ o - | ey -
) Low Low Low Low
b= ) | 1 || <L || ] |
High High High High
7)) g gh .~~~ ] e gn~
o — 4 P‘ 4 [ | 13 | 4 | L3 | | [ | k |
Sigma of Gaussian filtter Sigma of Gaussian filter Sigma of Gaussian filter Sigma of Gaussian fitter
0 ] 0 0
‘ ‘ VWWritten by Peter Nagy
iewil Quit
‘ Start viewing | Help ‘ u vi1
[ guhosinn J Y Byl DL B L A 1
y 1
x-zplane /i _.._____
l |
I | !
{ |
[ e e =
X This is the x-z plane: x-z plane et
p ¥ A7
I
- : SO0
7
X-y plane f-- 4 -] o
I I |
1 N N
L !
7’
Z y 1.7 |
- -
4
.
e
e
7




Displaying 3D images 2.

Maximum intensity projection:

——————————————————

 The objects are viewed from this direction.

* Along each projection line we look for the pixel which is the
brightest and this pixel will be displayed in the 2D projection.

* Advantage: fast to calculate

* Disadvantage: weak 3D effect

* The level of 3D impression can be improved if the maximum

intensity projection is displayed from several directions:
“rotation”.



Optical and digital resolution power
Digital resolution power:

e A digital resolving power better than the
Objective optical resolution is useless.
e Approximate rule: the pixel size has to be
o approximately the same as the optical
resolution.
slide e Accurate rule: Nyquist sampling theorem: if
the largest frequency component of a function
Optical resolution power: is f, then it can be reconstructed by sampling it
at a rate of 2f = if the smallest optically
A A resolvable distance is d, then the pixel size has

- 2NA: 2nsin to be d/2.

A — wavelength
n —index of refraction of the medium between
the objective and the object

d — with this optical resolution power the perodic
structure on the left is resolvable, the right one isn’t.
<> <>

Pixel size according to Pixel size according to

If the optical resolution is d: . )
the approximate rule. the Nyquist theorem. 10



Histogram, LUT

40000 | The histogram on the left displays
the distribution of pixel
intensities stored in the images.

20000 -

Frequency of pixels

0 10 20 200 250

Pixel value

e The displayed color or gray-scale value of pixels is determined by the LUT (look-up table). The LUT
assigns a display value to each stored value.

* The LUT does not influence the stored image content, only the display mode.

Display of gray-scale images is usually done on 256 levels

. LUT ] - — whi i
pixel value displayed value of gray (Q t.JIa.ck, 255 — white), since the human eye
cannot discriminate more gray levels.

Stored pixel values: 1 2 3 4 5 6 7 8 9

LUT1 |1 2 3 4 5 6 7 8 9

LUT2 |20 |40 60 80 100 | 120 |140 |160 | 180

LUT3 |20 |40 60 |80 100 | 255 | 255 | 255 | 255

B
w
(o)}

11



reduced contrast

enhanced contrast

The effect of the LUT

The LUT can be given as a plot of displayed pixel values against stored pixel values.

Specimen Image 500 Grayscale Histogram
- i

L

Ta - .

Pixel Count
ssauybug |ax14 inding

0

[
[
L]

Pixel Intensity
Specimen Image 500 Grayscale Histogram
x - S S

o ® /o
: 5
L=
E E
5 -
8 3
3 g
)
* z
2
w
W

500 Grayscale Histogram
.r'/-l_/_ n
.l"rf .E
-E E
g -
S &
3 g
)
o 4
2
w
w
255

Pixel Intensity
www.olympusmicro.com

255 A e

displayed pixel value

_ 255
stored pixel value

increased brightness: the display value of
each pixel is increased

increased intensity: steeper relationship
between the displayed and stored pixel
values. The displayed value of pixels with
high stored intensity is increased
preferentially.

increased contrast: the intensity range for
pixels in the middle of the scale is increased.

12



Frequency of pixels

Frequency of pixels

1000

5000

4000 -

3000 -

2000 -

1000 -

0

800 -

600 -

400 -

200 -

0

Modifying the LUT with Corel PhotoPaint

Original

0 50 100 150 200 250

Pixel value

I EN

Brightness=50

0

50 100 150 200 250

Pixel value

Wi

Frequency of pixels

Frequency of pixels

5000

Intensity=50

4000 1
3000 H
2000 H

1000 -

0 llll““ | , | m | i

0 50 100 150 200 250

5000

4000 |

3000 1

2000 -

1000

Pixel value

Contrast=50

0 50 100 150 200 250

Pixel value

L\

13



The effect of the LUT

Original: Original (stored on 12 bits):
- P 200
250 1 5000 - '& 250
T 200
200 1 4000 o " iy
g £ ! 33
3 2 G 150
E 150 3000 S‘ ! > 100
@© o =3
_g' 100 2000 g ' |2 100
g
50 1000 " 50
0 0 0 - ' : ‘ 40
0 1000 2000 3000 4000

0 50 100 150 200 250

Pixel value Pixel value
Linear stretch: Linear stretch:
250 A 5000 250 7 200
200 - 4000 o 200 A
g 2 g
T 150 1 3000 T 150
3 § B 100
& 100 2000 g @ 100 4
a =1 2
o
50 1000 Y+ 50
0 : ; ; ; + 0 0 ‘ : : -0
0 50 100 150 200 250 0 1000 2000 3000 4000
Pixel value Pixel value

In linear stretching the the lowest and highest displayed intensities are assigned to
the highest and lowest stored values and the range in between is distributed
linearly.

Frequency of pixels

Frequency of pixels



Gamma correction

= const Pixel 4

stored

Pixel display

The displayed and stored pixel values
are assigned to each other according to
a power function.

Y<1 — gamma compression

v>1 — gamma expansion

eredeti

250

200

Displayed value

50 1

150

100 |

50 100 150 200 250

Pixel value

—— y=0.5
— y=2

15



Contrast stretching: enhancing the contrast

250 - 2000
200 1 L1500 2
2 2
S 150 5
E‘ - 1000 ?
Q.
o 100 - o}
:
- 500 T
50 -
0 - T 0 - [
0 1 200
Pix e w 15!
2 contrast stretched
o .
A pixelek felsé és alsé6 % 1 histogram
>
5%-a (lehet mas % is). "¢ -
250 - 2000 3
£ 05
200 1 0
1500 @ 0 Lot L B,
g = 0 50 100 150 200 250
§ 150 5 - pixg] value -
3 [ 1000 é‘ Contrast stretching by dragging the lowest
& 100 - G and highest 30% to 0 and 255,
a i g respectively — the majority of pixels will
50 500 I be either black or white.

0 and 255 is assigned to the 5t
and 95 percentile and the range
in between is distributed linearly.

o
o
o

100 200

Pixel value

Contrast stretching can be performed on the stored or the displayed (as above) pixel values. Modifying the stored
pixel values for optimal display is only advised after evaluation of the image is completed. 16



Histogram equalization

An algorithm ensuring that each intensity in the image is present with the same relative frequency.

are present in the image and p(f) is the distribution function of the intensity:
p(f)=P(1<f)

If intensities are displayed according to

Intensities 0,1,..., /

max

I =1_p(f)

then the relative fraction of intensities lower than / will be //1

max*

original

= equalized
c
‘ap 1.0 0.05
a

3 08/ > 0.04 |

2 c

— [}

2 0.6 z 0.03 |

s £

[}

5 0.4 2 002

= s

5 &

> 1 .01 |

g 0.2 0.0
©

o
.g 0.0 : , , , : 0.00 , : : : ;
f_:U 0 50 100 150 200 250 0 50 100 150 200 250
g Intensity Intensity

17



Filters

A tool used during evaluation and noise reduction of images which calculates the new
value of a pixel based on the intensities of the pixel and its neighbors according to a

given function.
Representing filters:
O using a formula:

m m
gx,y = Z Z Wk,I fx+k,y+|

k=—mI=—m

O by drawing the filter:

g,, — calculated new value of the pixel
fx+k,y+, — original values of the pixel and its

neighbors

w, | — weighting factor

1/9 1/9 1/9

9 2 3|2 8 2.78 4.33 3.00 3.33 1.78
1/9 1/9 1/9

10 4 11| 5 1 3.67|6.44|6.00 6.67 3.89 9+2+3+10+4+11+2+6+11
1/9 1/9 1/9 9

2 6 11110 9 q 4.78 7.89 8.11 8.00 4.89

10 11 6 9 10 5.22 8.11 9.33 9.22 6.33

7 11 9 11 8 4.33 6.00 6.33 5.89 4.22

The size of the above filter is 3x3, but it can be 5x5, 7x7, etc.
There exist filters for smoothing (as above), edge detection, gradient detection, etc.

=6.44

18



Fourier and inverse Fourier transformation

* In the previous slide application of filters in the spatial domain has been described.

 The display of images in the conventional, spatial domain shows pixel intensities at any
given spatial location.

* |t can be given what spatial frequency characterized the objects in the image, i.e. the
image can be converted into the frequency domain.

e This procedure is called Fourier transformation:

i I ™

Original image (f) Fourier transformed image (F)
N Ly ikxely n kx + | n n . kx + |
Fo=>> f. e T 8, = f,, COS(Z?Z’ yj, b, ==->.>" fX’ySII’](Zﬂ' yj
x=1 y=1 x=1 y=1 n x=1 y=1 n

 The original image can be generated from the frequencies:
Ckx+ly

1 & 27— 1 & kx + ly : kx + ly
fx,y:FZZFk,Ie fxyy:—zZZ(akJCOS(Zﬂ' - j—bk',sm(Zz n D
19

k=1 I-1 N =




Filters in the spatial and frequency domains

Filters can be applied in the frequency domain as well:

b=f *a b —image generated by the filter
f—the filter
a — the original image
* - application of the filter (convolution).

. B — Fourier transform of b
B=F-A F — Fourier transform of the filter
A — Fourier transform of the original image
- - multiplication

b =invFT (B)

For many filters application in the frequency domain is advantageous due to faster
calculation.

20



Image degrading factors during digital imaging

a. hoise
b. scatter
c. glare
d. blur
ad a:

Noise has two sources:

e statistical nature of photon detection
(Poisson distribution)

e imaging system (normal distribution)

ad b:

e Generated in the sample.

e The thicker the sample, the more
pronounced it is.

ad c:

e Scatter and reflection generated in the
imaging system of the microscope.

e Usually minimal in modern microscopes (if
adjusted properly).

ad d:

* Due to diffraction as a result of the wave
nature of light.

e It can be characterized by the PSF (point
spread function).

http://www.olympusmicro.com/primer/digitalimaging/deconvolution/deconvolutionhome.html 21




probability

: . N*
The number of detected photons (n) follows a Poisson distribution: P(n — k) = k— -N
02 T T T T T T T T T T I
0.15¢ The distribution of the . Expected number of photons: N
number of detected
photons, if the expected /
0.1+ . .
number of photons is 5. SD of photon number: N
0.05 | Relative error of photon number: Y N —
N

Noise generated by photon detection

N

N

5

50

4 6 8 10 12 14 16 18 20
k

The larger the expected photon number, the smaller the relative error is.

The images are displayed linear stretched, this is why the

images on the left look equally bright.

Original image (without noise)

with Poisson noise added

1
JN

22



Image restoration

* During the acquisition of microscopic images considerable amount of noise is superimposed on the
data.
* The aim of image restoration is to suppress noise for
e the better representation of the object
e the better look of the image
* Image quality is usually deteriorated by the following two factors:
* noise — its effect is decreased by image restoring algorithms (noise reduction)
* blur — its effect is decreased by deconvolution

Image restoration (suppression of noise)
* By modeling the statistical nature of noise it can be removed almost completely, but this approach

is rarely used.
e The principle of the most frequently used algorithms:

. . 1
« relative error due to noise ~ W N - average photon number

e Therefore, it the new value of a pixel is calculated from many pixels
* the relative extent of noise decreases because the number of photons, from which the
intensity is calculated, in increased.
* but the relative resolution is also decreased, since the intensity of a pixel is calculated

from many neighboring pixels.

23



Low-pass and high-pass filters

Original image

Low-pass filter: IFT is carried out with
low frequency components, therefore
small objects are removed.

High-pass filter: IFT is carried out with
high frequency components, therefore
small objects appear without the
background.

Fourier
transformation

only low frequency componey

low frequency
components
were
suppressed to
zero

inverse Fourier
transformation i/

The zero frequency
component of a
Fourier transformed
is the mean of the
image, therefore it is
often retained in
high-pass filters so
that the mean
intensity of the
image is not
changed.

low-pass filter high-pass filter 24



Image restoration, noise reduction: pixel pooling

81611 |5])6|1
91312|8])8]|6

2611621
318413410

28 117 |16
819]19|1]10f 2

14128118
2141416513
018191982

Original image Smoothed image Original image Smoothed image

* In the procedure the intensity of
every 2x2 block in the original
image is summed (pooled) and
this summed intensity will be
entered into the smoothed
image.

e The size of the smoothed image
will be half of the original.

Original image Smoothed image e The block size can be different.
25




. . . . H 1/9 1/9 1/9
Image restoration, noise reduction: mean (average) filter A filter implementing

1/9 1/9 1/9 )
3x3 averaging.
1/9 1/9 1/9
861151611 2.9 3.313.8(2.3
9132886 4.1|14.9)14.4)14.6]|4.6(2.8
3184131140 4.416.1|5.2/5.414.713.3
81919 ]1]10]| 2 3.8|5.7|5.315.1|3.8]2.7
214|416 |5]3 3.4159|6.6]16.815.1]3.3
HP H H 018|919 ]|8]2 1.6(3.0]14.4(4.6(3.7|2.0
Original image Smoothed image

Original image  Smoothed image

350

300\ A

250

200

150

100 ‘ : :
0 10 20 30 40

Original image Smoothed image Original, mean filtered (window (kernel) size of 7)

e Each pixel is replaced by the mean of the neighboring pixels (3x3 pixels in the image above).
* The size of the smoothed image is the same as that of the original (as opposed to pixel pooling).
* Disadvantage: edges are suppressed. 26



Image restoration, noise reduction: median filter

The median of the given sample of 9 elements.

816 1 5 6 1 2 5 0
9 3 2 8 8 6 4 4 4 1
3 8 4 3 4 0 3 8 4 4 4 2
81919 1110 2 3 (4141143 2
2 4 4 6 5 3 2 8 8 8 5 2
i H H 0 8 9 9 8 2 0 2 4 5 3 0
Original image Smoothed image
350

300 r LA

250 ¢

200 |

150+

100 \ \ \
0 10 20 30 40

Original image Smoothed image Original, mean filter (kernel size of 7),

e Each pixel is replaced by the median of the neighboring pixels (3x3 pixels above).
e Edges are preserved much better than by the mean filter.



Image restoration, noise reduction: max-min (min of max) filter

Original

Max (filter size: 5)

Min of Max (filter size: 5)

The max-min filter can be used for background subtraction:

Min of Max (filter size: 50)

Original— minOfMax(50)

Maximum filtering: each pixel is
replaced by the maximum of a
neighborhood of given size
thereby eliminating objects
smaller than the filter size.
Minimum filtering is carried out
on the output of the previous
step shifting edges back to their
original position.

ANA

50 100 150

Original signal
Max
Min of Max

28



Image restoration, noise reduction: Kuwahara filter

The mean of the subwindow
with smallest variance.

Kuwahara

29



pdf

Image restoration, noise reduction: Gaussianmer

02 0.08
0.15 0.06
01 1 0 "-g_ 0.04 ’ 2 0
0.05 A8l cov = {0 1:| 0.02 y - i | coVv = {O 2}
0

0.075 0.124 0.075 0.102 0.115 0.102

0.124 0.204 0.124 0.115 0.131 0.115

0.075 0.124 0.075 0.102 0.115 0.102

Digital version of the Gaussian which is used

e Gaussian filters have two adjustable parameters: as a filter.
e filter size (how many pixels wide)
e variance of the normal distribution
* Since the Fourier transformed of a Gaussian function is also a Gaussian, Gaussian filtering is a low-pass
filter.
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Image restoration, noise reduction: Gaussian filter

Original image Smoothed image

Smoothed image

Original image

1 0
CoV =
0 1

0.075 0.124 0.075

0.124 0.204 0.124

0.075 0.124 0.075

6 1 3.72 3";4 3.63(4.01]2.29
8 | 6 4.62|4.91)4.04]4.89]5.28|3.09
4 |0 4.61]6.09(5.12]4.90(4.69(2.84
10 | 2 4.27]6.41(5.64|4.95|4.43|2.69
5 3 3.17|5.62|6.31]6.28(5.42]3.08
8 12 1.5413.69(5.19(5.36]4.29]2.15
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The point spread function (PSF)

* The image of a point-like object will not be a point even in a perfectly functioning optical
microscope due to the wave nature of light and the fact that only a fraction of emitted photons are

detected.
* The image of a point-like object blurred as a result of the aforementioned factors is called the point
spread function (PSF). Airy disc
500
E o

-500
500

500

y (nm) x (hm)
The PSD in three dimensions Two dimensional projections of the PSD
B 0.44 _ 1.42n

— d ="
lateral NA axial NAz

A —wavelength, NA — numerical aperture, n — index of refraction of the medium between the object and

the objective
http://www.olympusmicro.com/primer/digitalimaging/deconvolution/deconvolutionhome.html 32




The PSF in three dimensions

Sibarita, J. B. 2005. Deconvolution microscopy. Advances in biochemical engineering/biotechnology 95:201-243.
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PSF

The PSF

The PSF in an x-y plane can be adequately approximated by the following Bessel function:

PSF =

-500° 500

y ()

ZJI(Zﬂrtan a)j
A

27
—rtanw
A

a00

x (nm)

’ A— wavelength

r — distance from the optical axis
o — half-angle of the objective
J, — Bessel function of the first kind, of order 1

PSF

500

-000
¥ Enmj 500 W [nmj
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The PSF

The central maximum (Airy disc) of the PSF in an x-y plane can be approximated by a Gaussian:

PSF _ e—Z.S(jrtan a)jz

PSF

&00

500 500
¥ [nm:l ¥ [nmj
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Interpretation of optical resolution by convolution

Object PSF (convolution kernel) Image
3 9 4 9 8 6 6 7 0.000 0.167 0.000 0.000 0.500 1.500 0.667 1.500 1.333 1.000 1.000 1.167 0.000
8 6 |1 9 4|1 7 2 0.167 0.333 0.167 0.500 3.833 5.167 4.500 6.500 5.833 4.500 5.333 3.667 1.167
4 s |25 2] 2 6 a4 0.000 0.167 0.000 1.333 4.833 5.833 3.833 6.167 4.667 3.500 4.833 3.667 0.333
9 1 1 5 4 4 5 6 0.667 5.000 3.833 2.6674.667]3.167 2.833 5.000 3.667 0.667
2 9 2 3 1 8 5 8 1.500 4.167 4.333 2.000 3.833 3.333 4.500 5.167 4.833 1.000
3 6 2 9 1 0 3 1 0.333 4.167 4.833 3.167 3.833 3.000 4.333 5.667 4.667 1.333
1 4 4 4 9 0 7 9 0.500 2.500 5.000 4.167 4.667 3.500 2.000 3.167 3.667 0.167
1 5 0 1 10 2 2 8 0.167 1.667 4.000 3.000 5.167 5.500 3.000 4.667 5.667 1.500

0.167 1.333 2.500 1.667 2.667 5.333 2.667 3.500 4.500 1.333

0.000 0.167 0.833 0.000 0.167 1.667 0.333 0.333 1.333 0.000

 The image is generated by the convolving the object with the PSF.
 The image of the pixel with intensity 5 is determined by the pixel itself and its

neighborhood:
9 4 9 8 6 914 9 8|6 9 4 9 8 6 9 4 9 8 6 9 4 9 8 6
611 9 41 611 9 4)1 6 1 9 4 1 6 1 914 1 6 119 4 1
512 212 512 212 512 212 5 2 2 2 5 2 2 2
111 5 414 1 1 5 4 4 111 5 414 1 1 514 4 1 1|5 4 4
9 2 3 1 8 9 2 3 1 8 912 3 1|8 9 2 3 1 8 9 2 3 1 8
5.0.33+2-0.167+2-0.167+9-0.167+5-0.167 =4.67  image = object * PSF

image(x,y)= i i object (i, j)PSF (x—i,y—j)

i=—00 j=—o0 36



Convolution-deconvolution

Image

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Object PSF (convolution kernel)
o o o o ©0 o0 o0 O 0.000 0.167 0.000
o o o o o0 O0 0 O 0.167 0.333 0.167
o o o o o0 o0 0 © 0.000 0.167 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.167 0.00¢

0.167 0.333 0.167%

0.000 0.167 0.00¢

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The fact that the image of a point-like object is blurred and is equivalent to the PSF
can be interpreted according to the convolution theorem.
The object can be restored from the image by deconvolution assuming the PSF is

known. convolution

Object

Y

Image

deconvolution
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Convolution-deconvolution

e Deconvolution in the spatial domain cannot be given as a closed-form expression.
e Both convolution and deconvolution can be carried out in the frequency domain:

convolution deconvolution
spatial domain  object * PSF =image —
frequency domain FT(object)- FT(PSF)z FT(image) FT(image)./FT(PSF)= FT(ObjeCt)

FT — Fourier transformation

IFT — inverse Fourier transformation

./ — element-wise division

. — element-wise multiplication (,,.*” in Matlab)

38



Deconvolution in three dimensions

Since not only points in the given plane, but also above and below it contribute to an
image point, deconvolution makes real sense only in 3D.

In this case the image is generated by the 3D convolution of the object with the 3D PSF.
Therefore, the object can be reconstructed by the 3D deconvolution of the image with
the 3D PSF.

The procedure can be applied to 3D image stacks recorded by conventional (non-
confocal) microscopes — contrast is significantly, resolution is slightly increased.
Determination of the 3D PSF is of central importance. Usually it is achieved by
measuring the 3D image of fluorescent bead if the bead considered to be point-like.

Original confocal image after deconvolution 29



Color images

* There are three different color-sensitive receptors cells (cones) in the human eye which are
sensitive for the red, green and blue spectral range.
* Therefore, color can be imagined as a function of three variables or a three dimensional space:

RGB color space: HSI color space (hue, saturation, intensity):

* R:intensity of red [0-255] or [0-1] A circle is drawn perpendicular to the diagonal of the cube. The

e G:intensity of green [0-255] or [0-1] (R,G,B) point is on the circle.

e B:intensity of blue [0-255] or [0-1] e H:the angle made between the radius drawn to (R,G,B) and the

line drawn from the origin of the circle to the blue corner
* S:theratio of the radius of the circle to the line drawn from the

The RGB color model is used in most cases circle origin through the (R,G,B) point to the edge of the cube
for the interpretation of color images (how far the (R,G,B) point is from the diagonal)

* |:the distance of the origin of the circle from (0,0,0)
2560 .
200
200 .
150
o f o
= =
= 100 = 100
L~
—
0
0 2560
- 50 200
~ 100 150
150 100
200 50
250 @ green
0 0 red

green red



The RGB color space

hlue

green 0 0

red
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Color images, generation of color composite images
During the investigation of biological samples the acquired images are usually gray-scale images, therefore color
images arise only when images recorded in different channels (different wavelength ranges) are overlaid on each
other.

Original gray-scale images: Color image
e first wavelength range — red channel
e second wavelength range — green channel
e third wavelength range - blue channel

For better visibility different colors can be used, e.g. due to the bad visibility of blue on black cyan is often used
instead of blue.
It is advisable to contrast stretch the individual channels in order to increase the intensities to be emphasized to 255.

First channel — red Second channel — green Third channel — blue Color composite image
W = | Em—— without contrast stretching

T it — Separate stacks for each channel—

Channel 1 Channel 2 Channel 3 Channel 4

@ Separate color stacks. b c d

Overlaid color stack

Aspect ratio 1 7| Orthogonal view | Clip to 255 ~ | Output image

_ chainal T et  Cramner ety Color composite image
Color scale | Color scale Color scale | Color scale .

PR [ [ ———r after contrast stretching
] o 0] = g /4] i the red and green

H\gf] Hig_r_\___ High High Ch a n n e | S:
| < ] | ]| 2L ¥

Sigma of Gaussian fitter Sigma of Gaussian fiter Sigma of Gaussian fiter Sigma of Gaussian fitter

L] ] 0 0

| ‘Written by Peter Nagy
vi.12

Start viewing
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Spectral unmixing

e Itis possible that the distribution of fluorophores cannot be determined based on the images
acquired in different fluorescent channels if
* the sample is labeled with dyes with overlapping spectra
o different fluorophores are mixed in single pixels

107 107 107
2 2 2
§5X106 %5)(106 §5x106
€ = €
0 ‘ ‘ 0 0
500 550 600 650 500 550 600 650 500 550 600 650
kem (nm) }“em nm) Kem (nm)
N A
107
106
"Z\ 5
 The spectrum, typically the emission spectrum, is recorded in each [ 10
. Q 4
pixel of the sample. £ 10
 The sample has been labeled with three different fluorescent dyes 108 / —_ E:ﬂg;ggﬂgi;
whose spectra can be determined: —— Fluorophore 3
 The fluorescence intensity in individual pixels is expressed by the 10° | |
500 550 600 650

following expression:
I(A)=F(1)s(1,4)+F(2)s(2,4,)+F(3)s(3,4,)
F(1), F(2), F(3) — the relative quantity of individual dyes in a pixel
s(1,A,), s(2,1,), s(3,1;) — the spectrum of individual dyes at a given wavelength

Aem (NM)
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Spectral unmixing

* The previous set of equation in matrix form:

s(L,4,) s(24,) - s(kA)][F(k)] [1(4)
 The above equation set is overdetermined, since there are k (in the above case 3) independent

variables for n (in the above case 15) equations, therefore on approximate solution can be
found with fitting.

e As aresult the distribution of each dye can be determined:

The distribution of The distribution of The distribution of ' o
fluorophore 1 fluorophore 2 fluorophore 3 Error (residual) of the fitting

44



Mathematical morphology, morphological image processing: basic concepts

Morphology: The collection of such tools which can be used for the description and representation
of the shape and boundary (morphology) of objects in an image.

Another image (set) has to be defined with which the operation is carried out. This is called the
structuring element (S.E.) or kernel, e.g.:

The S.E. has a reference point (white x) with which its position is defined.

The S.E. is placed on every pixel of the image to be analyzed and an operation determined by the

given operator is carried out.

45



Morphological image processing: dilation

Binary dilation (@): The collection of those pixels on which the reference pixel of the
structuring element is placed producing an overlap between the structuring element and

the original object. ~
A®B= | B, ={(xY)
(x,y)eA

Original image (A): S.E. (B): Dilation step-by-step:

éx,y NA# @}

Overlap? no yes yes
Part of A @ B? no yes yes

Holes smaller than the structuring element are removed:

AD®B=

Structuring element (not
drawn to scale with the
image):

46



Morphological image processing: erosion
Binary erosion (©): The collection of those pixels on which the reference pixel of the
structural element is place resulting in all the pixels of the structural element being inside

the object. ASB = {(X, y) B,, C A}
Original image (A): S.E. (B): Erosion step-by-step:

BcA? no yes yes
Part of A © B? no yes yes

Objects smaller than the
structural element are
removed:

ASB=

o
S
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Morphological image processing: opening and closing

Aim: such an operator which removes holes or objects smaller than a given size without significantly distorting the
shape of objects.

Dilation: removes holes smaller than the structuring element but enlarges objects.

Erosion: removes objects smaller than the structuring element but shrinks objects.

Opening (°): dilation of the erosion: Ao B=(A & B) ® B
Closing (¢): erosion of the dilation: A« B=(A® B) © B

Objects or parts of objects smaller
than the structuring element are
removed, but the size of objects larger
than the structural element is not
changed.

Holes and gaps smaller than the
structuring element are removed, but
the size of objects is not changed
otherwise.

Structuring element:
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Morphological image processing: erosion, dilation, opening and closing

erosion

dilation

3ulso|d

duiuado
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Morphological image processing: demonstration of opening and closing

Opening: the union of the S.E. at all positions where the whole S.E. is inside the object. Opening
removes those objects or parts of objects that cannot contain the S.E., smoothes contours, breaks
thin connections and removes thin protrusions.

A-B= | ] B,

JAVARY (V.

Closing: the complement of the union of the S.E. at all positions where the S.E. is completely outside
the object. Closing tends to smooth the contours of objects, but it joins narrow gaps and fills holes

smaller than the S.E. _
AeB= | ] B,

By yNAzJ
/\/\ %

50




Morphological image processing: hit-or-miss transform

An operation which can be used to identify the presence of an object with a given shape.

A®B=(AoB)n(A°OB,)

A ASB, A°S B, A®B

B, B,=B,¢

g . s

The hit-or-miss transform identifies objects with a shape identical to structuring element B,.
Superscript ‘c’ stands for the complement of a set.



Morphological image processing: edge (boundary) detection

boundary(A)=A-(A©B)

blue-A&6 B
A white — boundary of the boundary
original image

structuring element: structuring element:
(thick boundary) (thin boundary)




Morphological image processing: morphological operations on non-binary (gray-scale)

Operation On a binary image

Dilation A®B= U éx,y :{(X’ y) Axy

(x,y)eA

Erosion AOB = {(x y)

Opening AoB = U B,,

BX’yCA

Closing AeB = U B,,

ByyNA=D

Gray-scale structuring element:

N

Reference pixel

Defines which pixels to consider.

images

On a gray-scale image

} (A®B)(x,y)= max( (x+k,y+|)+b(k,|))

(AeB)(x,y)= m;n( (x+k,y+1)+b(k,I))
A-B=(AcB)®B

AeB=(A®B)oB

— intensity of pixels in the image to be processed
b — values of the structuring element

If all elements are

zero, then it is a

1 0 < simple local
maximum
1 2 1 O O O operator.

... and how many to add to the pixel intensities of the image.
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Morphological image processing: demonstration of gray-scale operators

6

7

7

7

10(10)10]| 9

9

10|/10(10| 10|10

5

6

5

4

2

11112111113 (4|4
1121221111 (4]2

3(213|12(|2(1(1|2|2]|2

412(3(3|3|3(|2|3|4]2

212(2|4a|a|a|a|la|a]|a
4l2|4a|4a|s5|5|ala|a|a
4l4|la|la|s|6|alala|as

241414147514 |5(4

2(2(3(4|4|8|6|5|5]5

2(212)|13|6[9|5|5|5]|5

7

10/10(10| 5

6

3

2

O 0 O

Structuring element:
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Morphological image processing: morphological operations on non-binary (gray-scale)

images
Operation Demonstration on gray-scale images Structuring element
Dilation
Erosion '
p
Opening
Closing

\Nv/ —
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Morphological image processing: morphological operations on non-binary (gray-scale) images

Original image Dilation Closing

' '
\ A

LA
Erosion Opening

: ! ' '
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Morphological image processing: tophat transform of gray-scale images

Such an operation which removes objects (intensity trends) larger than the structuring element
from the image.

tophat (A)= A—(AeB) enhancing dark objects on bright background
tophat(A) = A—(Ao B) enhancing bright objects on dark background

A AoB tophat(A)
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Segmentation
Dividing the image pixels into different segments (groups, sets).
Typically the image is divided into two segments:
e foreground or objects: what is interesting for the evaluator
e background: what is uninteresting for the evaluator
Result of segmentation:
e as many pixel sets (usually two) as the number of segments the image was divided
into
e the boundaries between the sets.
Segmentation is often preceded by noise reduction and background subtraction.

Segmentation is necessary because computers lack congenital shape and pattern

recognition capabilities (see the image and numerical representation of the Mona Lisa).

Different means of segmentation:
e histogram-based segmentation, thresholding (manual, intermeans, maximum
entropy, Otsu)
e edge detection (LoG, Canny)

* region-based segmentation (watershed, split and merge)
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Segmentation: manual thresholding

* The first step in thresholding is the generation of the histogram of pixel intensities:

K%)
Y]

X

= 0.1 |

o

(]

o

<

£ 001

o

e

©

2 0.001 %
x

O]

o

0.0001

0 50 100 150 200 250

Intensity

* In manual thresholding such an intensity value is chosen based on the inspection of the
image or the histogram which seems to separate the foreground from the background in
the best possible way.

segmented=original>50;
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Segmentation: intermeans algorithm

[EEN

Initial threshold=median of the image
u,=mean of sub-threshold pixels, i,=mean of over-threshold pixels
3. Re-estimation of the threshold:

thrnew — ILll + ILlZ
2

4. Repeat steps 2 and 3 until convergence.

N

w
(O]
= X
- 0.1
threshold: 5
a o)
85.5 2
35 0.01 -
O
©
®
g 0001 %
©
(O]
[n'd
0.0001

0 50 100 150 200 250

Intensity



Segmentation: maximum entropy algorithm

In information theory entropy characterizes the uncertainty (and thus information content) of a
random variable or set. According to the Shannon formula the entropy of random variable k:

H (k)=-2_p;log, p,

The algorithm:

1. For all possible thresholds (from 0 to the maximum intensity) determine the entropy of sub-
threshold pixels.

2. From all the thresholds choose the one which is associated with the largest entropy.

0
o
X

! .y 0.1 {
threshold: °
- 8]
c

66 $ 001
o
0
©

g 00011 %

k|
(&)
nd

0.0001

0 50 100 150 200 250

Intensity
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Segmentation: Otsu’s method

. The essence of Otsu’s method is to

—\2 _
SS = Z (Xi _X) = Z Z (Xj,k — X+ X~ X) = maximize the between groups
icall pixels jeall groups keall pixels in group; variance (or SS) which is

_ —\2 —\ /= = - <=\ _ equivalent to minimizing the
N Z;(Xivk B Xi) + ZZ;(XN‘ —X )(Xi B X)+Z;(Xj B Xj) B within groups variance (or SS), i.e.
: : : such pixels are assigned to a group

— — 2 — — 2 . . .
= Z:SSW&j +an (Xj —Xj) = anSjZ +an (Xj —Xj) which are similar to each other
i i i

j regarding their intensity.

Zjlzk:()(j'k - X, )<7j —7) = Z(Yj —Y)Z(Xj’k —Yj)z 5 Algorithm:

j ” For all possible thresholds

o
°

— o calculate the within groups SS
within groups between groups  zero in each group (blue box).

squared squared .

deviations e S5 — sum of squares 2. Choose that threshold for which

the within groups SS is minimal.

1
w
| (O]
e 5
o i
threshold: 5 01
e )
66 2
e 0.01 ;
O
o
©
2 0.001 %
s
(O]
hd
0.0001

0 50 100 150 200 250

Intensity
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Segmentation: Laplace operator

N,

1.0 The first and second derivative of a function can be used for
2 I edge detection.
g 0.5 1 e [The second derivative of a function of two variables (Laplace
operator): 2 2
N gop O
0O 20 40 60 80 100 ox> @yZ
o 0.02 . /| Demonstration of the second derivative:
S 001 Function f(1) f(2) f(3)
- First
0.00 — ‘ derivative f(2)-f(1) f(3)-A(2)
0O 20 40 60 80 100
Second f(3)_f(2)_(f(2)_f(1)):
o 002 A derivative =f(3)+ f(1)-2£(2)
£ 0.00 e According to the above the x and y components of the
gz V Laplace operator: 52 f
002 > :f(x+1,y)+f(x—l,y)—2f(x,y)
0 20 40 60 80 100/ ax
o* f
~7 " f(x,y+1)+f(x,y-1)-2f(x,y)
y
e Digital filters implementing the Laplace operator:
0O]-1]10 1111 -1
only considering the xand y directions: |-} " | considering the diagonal directions as well: | 4 g | 1
0|-1]0 11| -




Segmentation: Laplace vs. LoG (Laplacian of Gaussian)

The Laplace operator works well
on non-noisy imasges...

but it fails on the noisy version
of the same image.

The Laplace operator is very sensitive to noise, therefore its application has to be preceded by
smoothing (low-pass filter) — Gaussian smoothing followed by the Laplace filter = LoG
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0.2

0.15

0.1

0.05

Segmentation: LoG (Laplacian of Gaussian)

Gaussian function Second derivative of the Gaussian

function=LoG

Depending on how noisy the image is the following parameters can be
adjusted:

the size of the kernel (filter). 5x5 in the case shown on the right.
the variance of the Gaussian function: the more the variance, the
more pronounced the noise suppressive effect is.

LoG

If the image is processed with a
digital filter corresponding to the
second derivative of the Gaussian
(LoG), noise reduction and edge
detection are carried out at the
same time.

A digital filter implementing the LoG
operation:
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Segmentation: zero crossing of the LoG transform

Although the intensity of the LoG-filtered image marks object boundaries, it does not classify
pixels to edge/non-edge categories (e.g. 1 — edge pixel, 0 — non-edge pixel).

Zero crossing of the second derivative
coincides with the boundary..

1.5
2 10
2
15
£ 05

0.0 :

0 2 4 6

o 0.0
'§ zero-crossing detection
3 02
m!—'

-0.4 :

0 2 4 6

010 Object boundaries can be
o unequivocally highlighted by

0.05 : :
§ detecting the zero crossing of the
g 0004 LoG-transformed image:
& 005 zero-crossing pixel — 1

-0.10 - - - all other pixels | -0

0 2 4 6

66



Segmentation based on the first derivative (gradient)

e The first derivative of a function of two variables (e.g. a 2D image) in the x and y directions is
defined by the following equations:

of of
G, =—, Gy =—
OX oy
* G, and G, can be determined with the following digital operators according to Prewitt and
Sobel: Prewitt Sobel
G, G, G, G,
2, |z, | 23 10 |1 1]-1] 101 1(-2]-1
Z, | 25 | z¢ 1]l0]1 o|lo]|o 2102 o|lo|o
Z, | zg | z4 1001 1 (111 100 |1 11211

,+2,+2,—2,-2,—-2, I,+21,+2,—2,~7,—1, I,+27,+2,—2,-22,-2, 1,+27,+2,—12—22,—-1,

* The absolute value of the gradient can be calculated exactly and approximated by the following

formulas: The approximation is used because it requires much less

‘G‘ — /GXZ +Gy2 ~ ‘Gx‘ +‘Gy‘ computation, but nowadays this consideration is less
important due to the availability of fast computers.

original Prewitt Sobel original Prewitt Sobel
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Segmentation: Canny edge detection
0.015]0.0210.024(0.021]0.015

1. Smoothing with a Gaussian filter, e.g. =2, kernel size=5x5 CUOZI 0B (05 B 012

2. Calculation of the gradient using the Sobel operator. 0.024(0.035(0.040(0.035(0.024

G
3. Calculation of the direction of the gradient in each pixel: ® =arctan (G—y) 0.021[0.031/0.035[0.031/0.021

X

0.015]0.021]0.024|0.021(0.015

4. Non-maximum suppression:
e round the gradient direction to integer multiples of 45° (horizontal, vertical, diagonal)
e compare the gradient of the current pixel to that of the pixel in the direction of the
gradient
e if the gradient of the current pixel is larger than its neighbor’s, then keep it, otherwise zero

; o

In this way the edge will be shrunk to a width of one pixel.
5. Double thresholding: 4| s 71 s1] 71

e gradient pixels larger than the high threshold are maintained (strong 51‘ 61‘ 4T 31‘ 27
boundary)
3 4 3
e pixels with gradient values smaller than the low threshold are zeroed 1\ T T 7 7
e pixels with gradient values in between the two thresholds are
marked for further analysis (weak boundary)

6. Analysis of weak boundaries: if a weak boundary is connected to a strong boundary, it is retained,
otherwise it is deleted.

Canny
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Segmentation: watershed algorithm

* The image has to be imagined as a 3D surface where height is proportional to intensity.

Watershed line Catchment basins

e If water is allowed to flow onto this height map from above, it will find the local minima. From a
catchment basin always the same local minimum. The boundary between catchment basins

corresponds to the boundary between objects in the image.

e The automatic version of the algorithm tends to find too few or too many boundaries depending

on the adjustable parameters.

* Therefore, it is much more efficient if the user marks every cell in the image (seeded watershed

segmentation) and then the algorithm will find exactly the same number of cells as seeds placed

on the image.

http://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html
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Segmentation: watershed algorithm

Automatic watershed Manually-seeded watershed Primary segmentation

segmentation segmentation with the seeds with the manually-
seeded algorithm

Original image

Deletion of non-cell objects,
unification of other objects

Result of the manually-seeded watershed
segmentation: membranes on the left,
membranes overlaid on the original image on

the right.
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fluorescence image
(gray-scale)

the user places seeds
on the image in order to
mark objects

Segmentation: watershed algorithm

the image is inundated in
topographical map order to find boundaries

inundation is started
from the seeds

identified boundaries

identified boundaries
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Segmentation: split and merge

Choose a value to which the variance of objects will be compared during the algorithm.
Splitting phase:
1. Calculate the variance of the image. If it is over the value chosen in point 1, then split the
image into four quadrants.
2. If the variance of any quadrant is larger than the value chosen in point 1, then split it into four
guadrants.
3. This process has to be repeated until the variance of all sets (quadrants) is under the chosen
threshold value.
Merging:
1. For every neighboring area check if merging two neighboring areas results in a set whose
variance is below the threshold. If yes, merge them.
2. The process has to be repeated with the newly generated merged areas as well until no
further merging is possible according to the above rule.

Original Result of the splitting phase The final result of the merging phase

72



Segmentation: k-means clustering

1. Forevery pixel there are n different measurements (e.g. pixel intensities at A, =520 nm,
A, =670 nm, etc.). n can be one. The following data set is available:

measurement 1 measurement 2 measurement n
pixel 1 f(1,1) f(1,2) f(1,n)
pixel 2 f(2,1) f(2,2) f(2,n)
pixel 3 f(3,1) f(3,2) f(3,n)
pixel k flk,1) fk,2) fk,n)
2. Decide how many clusters to identify (N).
3. For every cluster determine the initial mean:
measurement 1 measurement 2 measurement n
cluster 1 4(1,1) 1(1,2) 4(1,n)
cluster 2 1(2,1) 1(2,2) 4(2,n)
cluster 3 4(3,1) 1(3,2) 4(3,n)
cluster N H(N,1) 1(N,2) H(N,n)

—> 4. For every pixel determine to the mean of which cluster it is closest, i.e. to each pixel one of
the numbers (1...N) is assigned.
— 5. The means of the clusters created in point 4 are calculated.
6. The loop is continued until no pixel changes clusters.




Determination of the distance of points: Mahalanobis distance

The distance of a vector x=(xy,x,,Xs,..,X,,) from another vector p=(g,12,48,...1,) can be determined by
the following formula:

D(x,1) =(x-p) V7 (x-n)

where V is the variance-covariance matrix, -1 and T in the superscript stand for matrix inversion of
transposition, respectively.
The variance-covariance matrix:

oM [oemly-a)]

0, 4 is the variance of the 15t measurement, o , is the covariance of the 15t and 2" measurements.

normalized Euclidean distance Euclidean distance

diagonal matrix

identity matrix

o f 0 0 (1 0 0]

0 2 0 1\ 0 1 0
F¥; — D(X,ll) ZM Ha = D(X’u):\/Z(Xi —H )2

0 o0 G2 | 00 .1
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Segmentation: k-means clustering

1.

The k-means clustering
algorithm converges in
‘ ‘ ‘ ‘ ‘ ‘ four steps in this example
5 10 15 20 25 30 of clustering involving two

variables.
30+ 30! :
25+ 25! °
20 ¢ o 20
I i O
o 5 o o 2o
O O
15} i
- O g 15 S
10} O 10} O
O
O O.Q
[ )
5 O o 5 o o




Background subtraction

Algorithms which remove the background intensity and only the specific fluorescence

intensity of objects is retained.

e constant background subtraction: the same value is subtracted from every pixel in
the image

* all high-pass filters: the background contains low frequency components which can
be removed with a high-pass filter

* max-min filter

e tophat filter
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Measurements

* After the identification of objects (foreground) by segmentation the last step of image analysis is
typically the extraction of quantitative information.
 Why is quantitative evaluation necessary?
* so that the conclusion drawn from the images is not subjective
e only few cells can be measured by microscopy making microscopy statistically less robust
— this can be mitigated by quantitative evaluation
— it is advisable to measure and evaluate as many cells as possible so that the standard
error of the statistics decreases

3 control cells, mean: 118
3 “treated” cells, mean: 221

0.0100

T

0.0050

0.0025

Relative frequency of cells

0.0000 ; .
10° 10t 10?2 10% 104

Fluorescence intensity

\ J
Y

It is quite common that biological samples show a variability
of 1-2 orders of magnitude. If conclusions are drawn from
the analysis of a couple of cells, mistakes can easily be
committed.
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Measurements: 4- or 8-connectedness, the Freeman chain code

From the standpoint of measurements connectivity is an important concept, i.e. pixels in what kind of
relation are considered to be neighbors:

e 4-connectedness: e 8-connectedness:
a pixel has four neighbors (only those a pixel has eight neighbors (at the
which touch it along the edges) corners and along the edges)

Based on 4-connectedness the above counts as two objects, based on 8-connectedness it is one
object.

Starting at a given contour pixel and
moving clockwise, we give each

| pixel a code based upon its

direction from the previous pixel.

The above circumference is described by the following

Freeman chain code starting from the black point:

8—>1 —>6 56 56 >4 >4 >4 -1 >2 78



Measurements: length estimation

What is the distance between the two blue pixels?
(i,f)=(10,2)

A~ W

-

B

1 2 3
(k,/)=(2,5)

4

8

9

10 11

12

8

9

10 11

12

1. Euclidean distance:

\/(i—k)2+(j—l)2 =\/(10—2)2+(2—5)2 -85

2. Chessboard distance:

the number of steps needed by a king to
move from one place to the other

the shortest chain of 8-connected pixels
connecting the two points

max (|i—k|,|j-1])=8

3. City-block distance:

the shortest chain of 4-connected pixels
connecting the two points

li—k|+|j-1|=11
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Measurements: estimating the length of a curve or line

8-connected neighborhood I

lines of length d at

different angles

1 7
_
- N /
L1 z S o

H =

Number of pixels:
e 5.cos 0°=5 Ne =dCosa, ha a <45

° . o= _ ; °
If a line contains n pixels, its length is >+cos 30°=4 Nt = dSINex, ha o > 45

e 5-5in 80°=5
n/0.9. The mean of the above 47 4
The length of the above line: 8/0.9=8.88 - between 0° and 45°- ~ ! cosa da = 5" 0.9
4-connected neighborhood _
N =d(COSa +sina)

/
/

Number of pixels:
! / e 5:(cos 0°+sin0°) =5

e 5:(cos 30° +sin 30°) =7

L=
al /// e 5:(cos 80° + sin 80°) =6
Y

y

n . n n n ;z'/4
If a line contains n pixels, its length is The mean of the above % j (cosa +sina) da _4 _ 1273
n/1.273. - between 0° and 45°: T T

The length of the above line is: 8/1.273=6.28 80



Measurements: estimating the length of a curve

steps parallel
to the grid

steps diagonal

number of

length of the
above

(14) to the grid (5) corners (3) circumference
numﬁer of 1 1 0 19
pixels
Freeman
1 21.071
(1970) V2 0 0
Proffit (1979) 0.984 1.340 0 20.476
Vossepoel
. 1.4 -0.091 20.477
(1982) 0.980 06 0.09 0

parallel steps — even Freeman chain code
diagonal steps — odd Freeman chain code

Corner:

e the number of even-odd
and odd-even transitions
in the Freeman chain
code.

* steps of a chess knight

1 8

/—%

oo =0.984n_ +1.340n,
=0.98n, +1.406n, —0.091n,

Vossepoel ~

D
Dt eeman = Ne +\/_ 2N,
D
D.

/|

n. —number of even Freeman chain codes
n,—number of odd Freeman chain codes
n.— number of corners
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What is the area of the triangle on the right?
e estimation 1: A;=number of pixels=10

e estimation 2: A,= 7% (3x3)=4.5 (according to the formula for the area of a

e estimation 3: A,= " (4x4)=8 (according to the formula for the area of a

Measurements: area estimation

triangle if the length of an edge=end point - starting point=5-2=3)

triangle if the length of an edge=number of pixels=4)

All three estimations are acceptable and used.

Conclusions for length, circumference and area estimations:

the digitized version of real objects are visible in images

during the measurements we are interested in the parameters (length, area) of the real
objects

since the digital image is only an approximation of the real object, estimations carried out

on the digital image can also only be approximations of the real parameters
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Measurements: determination of mean intensities
Gaussian
smoothing+some kind b
of segmentation
(kmeans clustering with
n=2 in this case)

7

original x segmented

original image segmented image labeled image where
every pixel interesting each cluster contains
for usis 1 (red), all the pixels with different
othersare 0 values

Every pixel outside

, total intensity in clusters
clusters is zero. =

area of clusters
_ total intensity in image d
total intensity in image b

mean intensity in clusters=

e Area of all clusters: the sum of the red pixels (since every red pixel=1; the\
segmented image is stored in variable ,,b"):

e Matlab: area=sum(b(:)) Diplmage: area=sum(b); Diplmage: sum(a(b));
* The total intensity in the original image in areas corresponding to clusters: mf\:'(zb(}eshape(blnume,(b)ll):l))/
e d=a*b; sum(b(:))

e Matlab: totint=sum(d(:)); Diplmage: totint=sum(d);
 Mean intensity in clusters:

e totint/area J
* The above calculation can be performed for each individual cluster using

H a,n

iImage C.




Scientific image analysis programs

The most commonly known programs cannot be used for scientific image processing (Powerpoint,
Adobe Photoshop, Corel Photopaint)
The number of scientific image analysis programs is high, here only a few examples are given.

¢ Imagel =) EY

File Edit Image Process Analyze Plugins Window Help
IE olz|o|~4+s Al a2 selgla| | | |*]

Image] 1.47k Java 1.6.0_20 [64-bit]; 651 commands; 67 macros

Dev
-

e Imagel (rsbweb.nih.gov/ii/)
» free, biology-oriented, regularly upgraded, user friendly
e customizable and extendable with plugins (rsbweb.nih.gov/ij/plugins/index.html)
 multi-level usage:
e GUI
e recording macros (saving a series of commands available from the menu)
e writing Java programs (plugin)
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Scientific image analysis programs

4\ MATLAB 7.11.0 (R2010b) " 2 e e - =8| & .
Fite Edit Debug Parallel Desktop Window Help
M| s B9 ™ & 4 ] | @ | Current Folder | D:\Peter\Matlab programs - D i)
Shortcuts (2] How to Add  [#] What's New
I Current Folder w O 2 x| Command Window M 0O 2 X | Workspace B L
<« Matlabp.. » ¥ 2 B - S>> = Fﬁ {E Eﬁ B @SEI--- i
| Mame | Mame Value
I = Automatic watershed {at] loadDiplmage ‘Mo
F . Batch resize
3] CreateContour
I L ME&E_pfile
n-way ANOVA from summary s... -
QDTLpfile ' Bl DiPimage = | 8] &
[E2] recurs Ipha - c - " -, 3 5 " - oy
® | regressContourPlot Filel/O Dusplay Generation Manipulatior Point Filters Segmentation Transforms Analysis Statistics Help
=3} RICS_pfile
[ | TrendLine
Tukey HSD DIPimage toolbox for MATLAB
Uzsoki cici_anal
[ . Watershed_semiautematic .
2 bleachmg\f_ldec 2 Version 2.2 (17-Mar-2010)
fﬂ roundToMagn.m
) sample_dialog_figure.m Contact: Lucas J. van Viiet (mailto:info@diplib.org)

Authors: Cris Luengo, Bernd Rieger, Michael van Ginkel & Lucas van Vet

Details >

| 4\ Start | Ready

e Matlab (www.mathworks.com/products/matlab/)
* notfree
e command-line input — not user friendly
* extendable with programs written in its highly efficient programming language (M-files) many
of which are downloadable: www.mathworks.com/matlabcentral/
e impossible is nothing with Matlab...
e Diplmage (http://www.diplib.org/)
* atoolboxinstalled under Matlab
e GUI-controlled + extends the command collection of Matlab with special image analysis
functions
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Scientific image analysis programs

Cell Profiler (www.cellprofiler.org/)

free

an algorithm consisting of commonly used image processing tools can be built using an
menu-controlled system with which an arbitrary number of images can be analyzed
automatically (high-throughput image analysis)

E.-eftl}mﬁierf:rﬁ?lﬁ} - - [_- o B &

Fite Edit Test Window Datatools ‘Help

86



Scientific image analysis programs

Metamorph (www.moleculardevices.com/products/software/meta-imaging-
series/metamorph.html)

* notfree

* microscope control and image analysis

e user friendly

* extensive capabilities for image analysis and 3D visualization
Image Pro (www.mediacy.com)

* notfree

* microscope control and image analysis

e user friendly

e extensive capabilities for image analysis and 3D visualization
Usually every confocal microscope has its own software with which simple image processing can
be carried out.

* The freely downloadable version of these programs is simplified — only the simples

operations can be carried out, but efficiently and in a user friendly way.
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