

Elektronmikroszkópia

Nagy Péter (peter.v.nagy@gmail.com)

Debreceni Egyetem, Biofizikai és Sejtbiológiai Intézet

Miért van szükség elektronmikroszkópra?

A hagyományos fénymikroszkóp feloldóképességét nem lehet sokkal 200 nm alá csökkenteni.

A numerikus apertúra nem növelhető jelentősen 1 fölé. a hullámhossz 400 nm alá csökkentésének számtalan technikai akadálya, ill. nehézsége van:

- UV tartományhoz speciális lencsék szükségesek, és max. 2× javulást hoz létre a feloldóképességben
- a még rövidebb hullámhosszú sugárzás
 (röntgensugárzás) lencsékkel egyáltalán nem fókuszálható

o speciális, ún. Fresnel diffrakciós lemez szükséges

a röntgensugarak fókuszálásához

o a röntgensugarak előállítása és a

röntgenmikroszkóp megépítése költséges

Miért van szükség elektronmikroszkópra?

Louis de Broglie francia fizikus szerint minden elemi részecskéhez hullám rendelhető, melynek hullámhosszát a következő egyenlet adja meg:

$$\lambda = \frac{h}{p}$$

A de Broglie egyenlet származtatása a fény kvantumelméletéből és Einstein speciális relativitáselméletéből:

Einstein egyenlet
$$E = hf = h\frac{c}{\lambda}$$

 $E = mc^{2}$ $h\frac{c}{\lambda} = mc^{2} \Rightarrow \frac{h}{\lambda} = mc \Rightarrow \frac{h}{\lambda} = p$
foton lendülete (p=mv)

A de Broglie egyenlet szerint az elemi részecskéhez rendelhető hullámhossz fordítottan arányos a részecske lendületével: **gyors részecske** → **rövid hullámhossz**

Elektromos térben gyorsított elektron mozgási energiája: $E_{kin} = eU$ $E_{kin} = \frac{1}{2}mv^2 = \frac{p^2}{2m}$ $p = \sqrt{2mE_{kin}} = \sqrt{2meU}$

Egy gyorsított elektron hullámhossza:
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meU}} \approx \frac{1.23 \text{ nm}}{\sqrt{U}}$$

Csekély gyorsító feszültség mellett is szubnanométeres hullámhossz, ill. feloldás érhető el.

Az elektronmikroszkóp fizikai feloldóképessége

$$\lambda = \frac{1.23}{\sqrt{U}} \text{ nm}$$

$$d = \frac{0.6\lambda}{n \sin a}$$

$$d = \frac{0.6 \cdot 1.23}{n \sin \alpha \sqrt{U}} \approx \frac{0.74}{\alpha \sqrt{U}} \text{ nm}$$

Az elektronmikroszkóp lencsék félnyílásszöge kicsi, α ~0.01 rad. A törésmutató \approx 1.

Ezért pl. 10000 V-os gyorsító feszültségnél a feloldóképesség:

$$d = \frac{0.74}{0.01\sqrt{10000}} = 0.74 \text{ nm}$$

Az elektronmikroszkópok típusai

Az egész mintáról egyszerre alkot képet a hagyományos fénymikroszkóphoz hasonlóan, csak optikai lencsék helyett elektrosztatikus vagy mágneses lencséket használ. A minta egy-egy pixeléből kiváltott másodlagos elektronokat vagy röntgensugarakat detektálja, majd az egész mintát végigpásztázza.

- A SEM és a TEM keveréke:
- pixelenként pásztáz
- de az áteső sugárzást detektálja

Az elektronmikroszkóp és a fénymikroszkóp összehasonlítása

Az elektronágyú

- termikus emisszió: egy fűtött elektródszálból melegítés hatására elektronok lépnek ki.
 - A negatívan töltött Wehnelt cilinder hatására elektronok csak az elektródszál csúcsából lépnek ki → jobban fókuszálható az elektronnyaláb.
 - Az elektród készülhet wolframból vagy LaB₆-ból. A LaB₆
 erősebb áramot (több elektront) bocsát ki.
- Schottky emisszió: ha az elektródszálra negatív feszültséget kapcsolnak, a termikus emisszió mértéke nő → alacsonyabb hőmérsékletre kell fűteni a szálat.
 - Schottky emissziós katódok általában cirkónium-oxiddal burkolt W-ból készülnek.
- tér emisszió: ha a katódra kapcsolt negatív feszültség elég nagy, elektronok lépnek ki belőle fűtés nélkül is kvantummechanikai alagúteffektus segítségével. A téremissziós katódok W-ból készülnek.

Az elektronok gyorsítása

Az elektronok nagy feszültség hatására nagy sebességre gyorsulnak.

A munkatétel szerint az elektromos tér munkája (*eU*) az elektron mozgási energiáját növeli:

$$eU = \frac{1}{2}m_0v^2$$
 e – elektron töltése, U – gyorsító feszültség,
m₀ – elektron nyugalmi tömege, v – elektron sebessége

Mivel az elektronok sebessége megközelíti a fénysebességet, a fenti egyenlet helyett a relativisztikus egyenletet kell használni, amely figyelembe veszi az elektron tömegének növekedését:

$$eU = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \Rightarrow eU = \gamma m_0 c^2 \qquad \begin{array}{c} c - \text{fénysebesség} \\ \gamma - \text{relatív tömegnövekedés} \end{array}$$

U (kV) vagy E ₀ (keV)	γ	v/c	1/2m ₀ v ² (keV)	
100	1.2	0.55	77	Az energia nagy része a tömeg növelésére fordítódik.
200	1.39	0.7	124	
300	1.59	0.78	154	
1000	2.96	0.94	226	
				9/47

Elektronlencsék

1. Elektrosztatikus lencse:

negatívan töltött kör alakú, középen lyukat tartalmazó elektródok, melyek a középpontjuk felé térítik el az elektronokat.

2. Mágneses lencse: A mágneses teret tekerccsel állítják elő. A mágneses Lorentz erő iránya merőleges a sebességre és a mágneses tér irányára is: $F = Bqv \sin \alpha$

Képalkotási hibák

Az optikai lencsékhez hasonlóan az elektronlencsék sem teljesítik a tökéletes képalkotás feltételeit:

- 1. Minden tárgypontnak egy képpont feleljen meg.
- 2. A tárgypontok által alkotott térbeli mintázat legyen hasonló a képpontok által alkotott térbeli mintázathoz.
- 3. A lencse fókusztávolsága ne függjön a tárgytávolságtól.

Az elektronlencsék legfontosabb képalkotási hibái:

1. Szférikus aberráció: a lencse tengelyétől különböző távolságban érkező elektronok

különböző helyekre fókuszálódnak. fókusztáv. a tengelyhez közeli elektronoknak (f)

$$r_s = cf^2 a^3 = C_s a^3$$

- A szférikus aberráció egyenesen arányos a lencse félnyílásszögének (α) köbével.
- 2. Minél erősebb a lencse (*f* kicsi), annál kisebb a szférikus aberráció.
- 3. A fókusztávolság csökkenthető a lencseáram növelésével.

fókusztáv. a tengelytől távoli elektronoknak

Képalkotási hibák

Az elektronlencsék legfontosabb képalkotási hibái:

2. Kromatikus aberráció: a különböző sebességű (különböző hullámhosszúságú, különböző "színű") elektronok különböző helyekre fókuszálódnak.

Az elektronok sebességének különbözőségét okozzák:

- 1. Az elektronok különböző sebességgel lépnek ki a katódból.
- 2. A gyorsító feszültség fluktuációja.
- 3. Mozgási energia veszteség rugalmatlan szóródás miatt.

$$r_c = \alpha f \, \frac{\Delta E_0}{E_0}$$

- 1. A kromatikus aberráció egyenesen arányos a lencse félnyílásszögével.
- 2. Szintén egyenesen arányos a lencse fókusztávolságával.
- 3. ... és fordítottan arányos az elektronok mozgási energiájával (E₀).

Mind a szférikus, mind a kromatikus aberráció csökkenthető a lencse erejének növelésével (*f* csökkentésével).

Képalkotási hibák

A mágneses lencsékre jellemző képalkotási hiba a kép rotációja.

A kép rotációja azért lép fel, mert a tekercsbe belépő elektronok tangenciálisan gyorsulnak.

A mágneses és elektrosztatikus lencsék összehasonlítása

Elektrosztatikus lencsék előnyei	Mágneses lencsék előnyei
Nincs képrotáció	Kisebb mértékű képalkotási hibák
Kis energiaigény, egyszerű	Nincs szükség magas feszültségre
Nem szükséges nagyon stabil feszültségforrás	Immerziós lencseként is használható
lonokat is lehet fókuszálni	

Az elektronlencséknek nagy a mélységélessége, tehát a minta különböző mélységben elhelyezkedő rétegei is fókuszban vannak.

Vákuum

Az elektronmikroszkópban, különösen a TEM esetében, vákuumot kell létrehozni, hogy

- megakadályozzuk az elektronok szóródását
- megakadályozzuk a nagyfeszültségű komponensek közötti kisülést.

Vákuum létrehozására használt módszerek, eszközök:

1. Rotációs pumpa

90°

A nem centrális forgástengellyel rendelkező dugattyú forgása a levegőt beszívja (kék nyíl), kompresszálja (zöld nyíl), majd kipumpálja (piros nyíl). Az olaj elpárolog, majd a lefele irányuló légáramlás következtében lefele áramlik. A gázmolekulákkal való ütközések miatt azokat lefele téríti el, így a gázmolekulák koncentrációja csökken a felső részben. A pumpa hideg falával való ütközés miatt az olaj kondenzálódik. 15

Vákuum

Vákuum létrehozására használt módszerek, eszközök:

3. Turbomolekuláris pumpa

4. lonpumpa

Nagy sebességű turbina.

Az elektródok között létrejövő kisülések ionizálják a gázmolekulákat, és azok az elektródba ütköznek.

Az elektronok kölcsönhatása a mintával TEM-ben

A kontraszt keletkezése a TEM esetében. Mit és miért látunk egy TEM képen?

A fénymikroszkópban (nem fázis- vagy interferencia-kontraszt mikroszkóp) a kontrasztért elsősorban az abszorpció felelős: Az elektronmikroszkópban az elektronok nem nyelődnek el a mintában, csak szóródnak. A TEM-ben a legfontosabb kontrasztképző mechanizmus a szóródás (**szórás kontraszt**).

A kontraszt keletkezése a TEM esetében. Mit és miért látunk egy TEM képen?

- 1. Szórás kontraszt: az elég nagy szögben szórt elektronok nem jutnak el a detektorra.
 - A. Vastagság kontraszt: minél vastagabb a minta, annál jobban szór.
 - B. Rendszám kontraszt: a magas rendszámú elemek jobban szórják az elektronsugarakat (l. biológiai minták festése nehéz fémet tartalmazó festékkel).

 $\lambda \approx 2d\Theta$ kis diffrakciós szög esetében

Ha a diffrakciós szög olyan nagy, hogy a diffraktált sugarak beleütköznek a lencse diafragmájába, a diffrakciót okozó területen átmenő elektronok nem vesznek részt a képalkotásban.

Elektrondiffrakció

- Nem azonos a TEM képen megjelenő diffrakciós kontraszttal.
- Akkor látható, ha a TEM lencserendszerét úgy állítjuk be, hogy az objektív hátsó fókuszsíkjában keletkező diffrakciós mintázatot a képernyőre vetítse.

Elektrondiffrakciós kép

- A diffrakciós képből a kristályos anyag szerkezete kiszámítható.
- Hasonló elven működik a röntgenkrisztallográfia, de a röntgenkrisztallográfia pontosabb.

Biológiai minták esetében

- a mintakészítés az elektronmikroszkópos kísérlet leghosszabb részét teheti ki
- az elérhető feloldóképességet sokkal jobban befolyásolja, mint az elektronmikroszkóp fizikai paraméterei (az elektronmikroszkóppal elvileg szubnanométeres feloldás is könnyen elérhető, de ezt a biológiai minták csak ritkán teszik lehetővé)
- célja olyan ultravékony minta előállítása, amely az elektronnyaláb számára átjárható
- illetve nehézfém tartalmú festéssel kontraszt létrehozása

Biológiai mintakészítés lépései:

- 1. Fixálás: leggyakrabban glutáraldehiddel
- 2. Dehidrálás: a vizet felszálló aceton vagy etanol sorral távolítják el. A dehidrálás azért szükséges, mert a TEM belsejében található vákuumban a minta víztartalma gyorsan elpárologna, ami a minta roncsolódásához vezetne. Másrészt az epoxi gyanta hidrofób, így akkor képes a mintába behatolni, ha abból eltávolítják a vizet.
- 3. Beágyazás: A mintát epoxi gyantával itatják át, hogy az szilárd legyen (a metszéshez szükséges a szilárdság).

Epoxi gyantába ágyazott minták.

Biológiai mintakészítés lépései:

4. Metszés ultramikrotómmal: egy üveg vagy gyémánt kés ~100 nm vastagságú mintaszeleteket vág le, amiket folyadékrétegre úsztatnak.

Biológiai mintakészítés lépései:

5. A vízen úszó mintaszeleteket rézből készült "grid"-re rakják. A grid-et előzetesen elektron számára átjárható anyaggal (Formvar) vonják be, ami alátámasztást biztosít a mintának. Az elektronmikroszkópba a grid-en rakják be a mintát. Az elektronmikroszkóppal a mintának csak azon részei vizsgálhatók, amelyek a grid lyukai fölé esnek.

Biológiai mintakészítés lépései:

6. Festés: a festést lehet a grid-re helyezés után vagy közvetlenül a fixálás után végezni.

- Festésre azért van szükség, mert a biológiai minták nagyon alacsony kontrasztot adnak (egyenletes vastagság, egyenletes rendszám-eloszlás).
- Festés során nagy rendszámú atomot tartalmazó anyaggal kezelik a mintát.
- Festés fajtái:
 - o Pozitív festés: a sejtalkotókat festi meg (pl. ólom-citrát, uranil-acetát). Az ozmium-

tetroxid a membránok lipidkomponensét festi.

o Negatív festés: preferenciálisan NEM festi a sejtalkotókat (pl. foszfo-volfrámsav).

Biológiai mintakészítés egyéb lehetséges technikái:

immunogold jelölés:

- ~5-30 nm átmérőjű arany kolloid részecskéhez antitest adszorbeáltatható.
- Az így létrejövő immunogold részecske specifikusan kötődik azon molekulához a sejtben, amire az antitest specifikus.
- Az arany kolloid részecske éles kontraszttal kirajzolódik az elektronmikroszkópos képen.
- Különböző méretű arany részecskék egymástól elkülöníthetők, így egyszerre több fehérje is jelölhető.

Minta készítése elektronmikroszkópiához

Sokkal nagyobb számú aranygömb látható METTEM technika esetében 26/47

25 nm

Biológiai mintakészítés egyéb lehetséges technikái:

felszíni replika:

- a minta felszínét egy polimer filmmel vonják be (replika)
- a replika ott vastagabb, ahol a felszínen bemélyedések vannak
- a replikát eltávolítják a minta felszínéről, és azt vizsgálják TEM-mel → így nem szükséges ultravékony metszetet csinálni a mintából
- ha a felszínen kiemelkedés van, akkor a film a felszínt nagyjából egyenletes vastagságban vonja be, de a replika vetülete a ferde felszíneknél vastagabb, ezért sötétebbnek tűnik a TEM-ben (vastagság gradiens kontraszt)

Biológiai mintakészítés egyéb lehetséges technikái:

árnyékolás:

- a felszíni replika viszonylag gyenge kontrasztot ad (mivel szén alapú)
- a felszíni replikára platina gőzt áramoltatnak ferde szögben, így a platina a felszíni kiemelkedések árnyékában nem tud lerakódni.

• az árnyék hosszából a kiemelkedés magassága becsülhető:

$$\frac{h}{l} = \tan \alpha$$

Ultravékony minta készítésének módszerei:

- 1. Ultramikrotóm: biológiai (és egyéb puha) mintáknál
- Mechanikus módszer: egy ~1 mm-es szeletet vágnak, amiből egy néhány mm-es kör alakú lemezt vágnak ki (leggyakrabban ultrahangos fúróval). Ezt vékonyítják tovább pl. csiszolással.
- 3. Kémiai vékonyítás: valamilyen anyag leoldja a minta felszínét, így az annyira elvékonyodik, hogy alkalmas lesz TEM vizsgálatra.
- 4. Kémiai "jet" vékonyítás: a felszínnel reakcióba lépő anyagot "rálövik" a minta felszínére.
- 5. Elektrokémiai vékonyítás: a minta elektrolízis hatására vékonyodik.
- Ionsugár vékonyítás: a vákuumba helyezett minta felszínét gyorsított argon ionokkal bombázzák, amik energiát közölnek a minta felszíni atomjaival. Ennek hatására a minta atomjai kilépnek a vákuumba.
- 7. Vékony film depozíció: a vizsgálandó anyagot elpárologtatják, ami később egy hordozó felületére lerakódik, és ott egy vékony réteget képez.

Scanning elektronmikroszkópia: az elektron kölcsönhatása a mintával

A másodlagos elektronok keletkezését befolyásoló tényezők

 Másodlagos elektronokat elsősorban a már lelassult elsődleges elektronok váltanak ki.

- Ezért bár nagy primer elektron energia esetén több másodlagos elektron keletkezik, azok döntő többsége a kilépési mélységnél mélyebben keletkezik.
- Nagy primer elektron energia esetén csökken a kilépő másodlagos elektronok száma.

V = d s $V = \frac{d s}{\cos \alpha}$ $\frac{d}{\cos \alpha}$ $\frac{d}{\cos \alpha}$ $\frac{d}{\cos \alpha}$

Ferde felszín esetén nagyobb az a térfogat, amiből a másodlagos elektronok ki tudnak lépni a mintából.

Az élek intenzíven kirajzolódnak a SEM képeken.

3D-s hatás

Különböző jelek keletkezési mélysége pásztázó elektronmikroszkópban

Visszaszórt elektronok

A visszaszórt elektronok általában rugalmas szórás során keletkeznek, ezért energiájuk nagyjából megegyezik a primer elektronok energiájával → A visszaszórt elektronok energiája sokkal nagyobb, mint a másodlagos elektronok energiája.

A visszaszórt elektronok keletkezésének valószínűsége a rendszámmal nő \rightarrow a nagy rendszámú elemek sokkal jobban látszanak.

A visszaszórt elektronok a minta mélyebb rétegeiből is kijutnak (↔ a másodlagos elektronok csak a felszínről).

Marskőzet visszaszórt elektron képe

A visszaszórt elektronok által alkotott képen a minta vastag felszíni rétegének rendszám-kontrasztos képe látszik.

Az elsődleges elektronok szimulált pályái (kék) Visszaszórt elektronok (piros) 20 keV

Egyéb detektált szignálok SEM-ben

Minta-áram:

$$I_{minta} = I_p - I_{sec} - I_{BSE} = I_p \left(1 - \eta - \delta\right)$$

 I_{minta} – a mintáról elvezethető áram I_{p} – az elektronnyaláb által hordozott áram I_{sec} – a másodlagos elektronok által hordozott áram I_{BSE} – a visszaszórt elektronok által hordozott áram η – másodlagos elektronok keletkezésének valószínűsége δ – a visszaszórt elektronok keletkezésének valószínűsége

Az I_{minta} a minta topográfiájára és rendszám-összetételére jellemző.

Katódluminszcencia:

Bizonyos félvezető anyagokban a becsapódó elektronok a vegyértéksávból egy elektront a vezetési sávba emelnek. Amikor a gerjesztett elektron visszatér a vegyértéksávba, fluoreszcenciát bocsát ki, amely a félvezető anyagra jellemző.

Everhart-Thornley detektor

Feloldóképességet rontó tényezők SEM-ben

Mintakészítés SEM-hez

- Általában sokkal egyszerűbb, mint TEM esetében, hiszen nem kell ultravékony minta.
- Probléma: a minta jelentős mértékben feltöltődik, ha nem vezetik el róla a töltést.
 - o Ha a minta vezető, ez nem probléma.
 - Ha a minta nem vezető (mint a legtöbb biológiai minta), akkor általában a felszínét vékony vezető (fém) réteggel kell bevonni.
 - Ha a fémmel való bevonás nem lehetséges, akkor a SEM gyorsító feszültségének beállításával elérhető, hogy a mintán felhalmozódó töltés mennyisége kb. nulla legyen. A mintaáramot leíró egyenlet:

$$I_{minta} = I_p - I_{sec} - I_{BSE} = I_p \left(1 - \eta - \delta \right)$$

Ha $\eta+\delta=1$, akkor a mintán nem halmozódik töltés!

A primer elektronok energiája olyan alacsony, hogy nem nagyon képesek másodlagos elektronokat kiváltani, ezért η + δ kicsi \rightarrow elektronok nem hagyják el a mintát, ezért az negatívan töltődik a becsapódó primer elektronok miatt.

A másodlagos elektronok és a visszaszórt elektronok olyan mélyen keletkeznek a mintában, hogy nem képesek elhagyni → elektronok halmozódnak fel (negatív töltés).

Ha $\eta+\delta < 1$, pozitív töltődés lép fel, de ez nem probléma, mert önmagát korrigálja, hiszen a pozitív töltés visszavonzza a másodlagos elektronokat, így a töltésneutralitás helyreáll.

Elektronmikroszkópia biológiai mintákkal: speciális körülmények

• Problémák biológiai mintákkal:

- o érzékeny,törékeny
- o fiziológiás, hidratált körülmények megtartása fontos
- o a sugárkárosodás megelőzése
- o mindezt a kontraszt elvesztése nélkül
- Mintavédelem (sugárzástól, fixáló anyag károsító hatásától):
 - negatív festés: a vizsgált fehérje körüli vizet nehéz fémsóval helyettesítik. Így a fixáló szer a fehérjét nem károsítja közvetlenül. A fémsó kirajzolja a fehérje kontúrját.
 - vékony ablakos kamra ("sealed thin window chamber"):
 vékony berillium fóliával elzárják a mintát a mikroszkóp
 vákuumjától, így a minta megőrizheti a hidráltságát.
 - glükóz beágyazás: a minta víztartalmát glükózzal helyettesítik. A fehérjéhez erősen kötődő vízmolekulák kötve maradnak. Hátrány: a glükóz kontrasztja nagyon hasonlít a fehérjéjéhez, így nehéz a fehérjét a glükóztól elkülöníteni.
 - o környezeti EM (l. később)
 - o krio-EM (l. később)

Krio-elektronmikroszkópia 1.

- Cél: strukturális biológiában a minták minél kisebb károsítása az elektronmikroszkópia során
 - o a dehidrálási, fixálási és festési folyamatok biológiai mintát károsító hatásának elkerülése és
 - o az elektronsugár által okozott sugárkárosodás csökkentése
 - által.
- Mintakészítés: A mintát hidrált állapotában hirtelen fagyasztják le folyékony N₂-be (77 K = -196°C) vagy folyékony etánba (189 K = -89 °C) történő merítéssel a <u>vízkristályok képződésének</u> <u>megakadályozása miatt.</u> Az előbbi főleg csak fehérje minták esetében alkalmazható, az utóbbi vékony biológiai mintákra (sejt, vírus, stb) is, ui. az etán
 - o nem képez gőzt a minta felületén (↔ folyékony N₂, ezáltal a folyékony N₂ esetében lassul a hűtés sebessége)
 - vastag kondenzált réteget alkot a minta felületén (↔ folyékony N₂, aminél a vékony réteg miatt lassú a hűlés)
- A készülék:

Krio-elektronmikroszkópia 2.

- Felvételkészítés:
 - O A mintát alacsony sugárdózissal képezik le a sugárkárosodás csökkentése miatt (→ az alacsony elektronszám miatt a képek minősége rossz, ezt több kép átlagolásával javítják).

- A mintát alacsony hőmérsékleten tartják (~110 K) az EM vákuumjában
 - o a nem kristályos víz szublimációjának megakadályozására
 - az elektronsugár hatására keletkező molekulafragmentumok és szabad radikálok immobilizálására és ezáltal a sugárkárosodás elkerülésére.

Krio-elektronmikroszkópia 3.

• A minta több irányból való vizsgálatával krio-elektrontomográfia végezhető.

Environmental SEM (Környezet SEM)

Basic ESEM gas pressure stages

- Olyan SEM, amiben a mintát nem kell vákuumba helyezni.
- p₂<p₁<p₀, tehát az elektronnyaláb csak az út legvégén ütközhet gázmolekulákkal → nem szóródik jelentősen.
- A minta nincs vákuumban, tehát
 - nem töltődik fém bevonat nélkül sem, mert a mintán keletkező negatív töltést a gáz atmoszférában az elektronnyaláb által generált pozitív ionok semlegesítik,
 a mintát nem kell dehidrálni. (609 Pa alatti nyomáson a víz nem létezik folyadék állapotban! A biológiai minták integritásához fontos a hidráltság!)

Analitikai elektronmikroszkópia

- Az elektronnyaláb által kiváltott különböző szignálokból a minta összetételére, atomjainak rendszámára lehet következtetni.
- Az analitikai elektronmikroszkópia alkalmas elemek kvalitatív és kvantitatív meghatározására.
- Az analitikai elektronmikroszkópia során használt szignálok:
 - o karakterisztikus röntgensugárzás
 - o Auger elektronok
 - o elektron energiaveszteség
 - o katódlumineszcencia (biológiai mintákon nem)

Karakterisztikus röntgensugárzás keletkezése

Μ

Auger elektronok keletkezése

- 1. A gyorsított elektron által létrehozott üresedés egy felső elektronhéjról betöltődik.
- 2. A betöltődés során felszabaduló energia nem foton formájában sugárzódik ki, hanem egy környező elektron veszi fel, ami elhagyja az atomot.

Auger elektron

Gyorsított elektron által létrehozott üresedés

Karakterisztikus röntgensugárzás elemzése

- A karakterisztikus röntgensugárzás hullámhossza jellemző az atomok belső elektronhéjai közötti energiakülönbségre, intenzitása pedig az adott atom mennyiségére.
- A röntgensugárzás spektrális elemzésére két módszer áll rendelkezésre:

- a röntgen fotonokat egy félvezető dióda fogja fel
- a detektor által adott áramimpulzus nagysága a röntgen foton energiájával arányos
 ELŐNYÖK:
- az emittált röntgen fotonok kb. 1%-át detektálja, ami sokkal több, mint az XWDS esetében → gyors
- relatíve olcsó

Hullámhossz diszperzív spektroszkópia (XWDS – X-ray wavelength dispersive spectroscopy)

- a röntgen fotonokat egy diffrakciós rács hullámhosszuk alapján különböző irányokba téríti
- a detektor mindig csak egy bizonyos hullámhosszúságú röntgen sugárzást detektál ELŐNYÖK:
- nagyon jó hullámhossz szerinti feloldás

Auger elektron spektroszkópia

- Az alacsony rendszámú elemek esetén a karakterisztikus röntgen fotonok nagyon kis hatásfokkal bocsátódnak ki → ezen elemek röntgen analízissel nem vizsgálhatók.
- Az Auger elektronok viszont sokkal nagyobb valószínűséggel keletkeznek a könnyű elemek esetében.
- Az Auger elektronok energiája jellemző az adott atomra.
- Mivel az Auger elektronok energiája alacsony (<1000 eV), csak a felszíni ~1 nm analízisére használhatók.

Elektron energiaveszteség spektroszkópia (EELS – electron energy loss spectroscopy)

- A mintán áthatoló primer elektronok energiaveszteségét (többek között) az okozza, hogy a minta atomjainak belső héjain a primer elektronok üresedést hoznak létre (→ karakterisztikus röntgensugárzás, Auger elektronok).
- Ezért a primer elektronok energiavesztesége a minta anyagára jellemző.
- A primer elektronok energiáját mágneses spektrométeren mérik meg.
- Szintén elsősorban alacsony rendszámú elemek analízisére alkalmas.